
NASA Contractor Report 17751 1

Machine Characterization
e and Benchmark Performance

Prediction
Rafael H . Saavedra-Barrera

(brdSA-CB- 1775 11 1
Ah-6 BEICBBALiK PkR PCbW AlDCE P B P Z l C l l l C b i

(C a l i f o r a i a Criv.) 8 0 E CSCL I2A

lACEIbiE CBlkACTEEIZATXOI 889-15648

CONTRACT NCA2-128
December 1988

National Aeronautics and
Space Administration

NASA Contractor Report 17751 1

Machine Characterization
and Benchmark Performance
Prediction
Rafael H. Saavedra-Barrera
University of California,
Berkeley, California

Prepared for
Ames Research Center

December 1988
CONTRACT NCA2-128

NASA
National Aeronautics and
Space Administration

Ames Research Center
Moffett Feu, California 94035

I

Table of Contents

1 . Introduction ...
2 . Limitat ions of Benchmarking ..

2.1. System Characterization versus Performance Evaluation
2.2. The Role of Experimentation in System Characterization

3 . A Model for Performance Evaluat ion
3.1. A Common Representation for Programs and Computer Systems
3.2. The Class of Systems Studied

3.3. A Linear Model for Program Execution

3.4. Limitations of the Linear Model

...
.....................................

...
4 . The Sys tem Characterirer ..

4.1. Machine Implementation of Data Types
4.2. Description of the System Characterizer’s Parameters

4.2.1. Data Type Declarations ..
4.2.2. Expressions ...
4.2.3. Statement-Level Control Structures
4.2.4. Additional Parameters ...

4.3. Experiment Design ...
4.4. Test Structure and Measurement ..

4.4.1. Direct Tests, Composite Tests, and Indirect Tests
4.5. Experimental Errors and Confidence Intervals

4.5.1. Reducing the Variance
4.6. Is the Minimum Better than the Average?

..

..

..

..

..

..

..

..

..

..

..

..

.........

.........

.........
4.7. Results Obtained with the System Characterizer

5 . The Program Analyzer ..

1

2

2

3

4

4

6

7

8

9

10

1 1

12

13

15

19

20

21

23

23

25

27

29

37

iii PRECEDING PAGE BLANK NOT FILMED

5.1. Execution Profilers ...
5.2. Static and Dynamic Statistics ...

5.2.1. Description of the Test Programs
5.3. Output from the Program Analyzer ...
5.4. Program Statistics ...

6 . T h e Execut ion P r e d i c t o r ..
0.1. Computing Execution Estimates and Experimental Errors
0.2. Execution Prediction and System Characterizers
6.3. Model 1-alidation ...
6.4. Execution Predictions and Actual Running Times

7 . Analys is of Results a n d S u m m a r y ...
7.1. Analysis of Results ...
7.2. Future Improvements t o Our System ..
7.3. Summary ...
7.4. Acknowledgements ...

8 . References ..
9 . Appendix ...

iv

I

37

38

39

4 3

4 3

47

47

47

4 8

49

56

50

59

64

64

05

69

List of Figures

Figure 3.1: System characterization and performance analysis
Figure 4.1: The same system charactrrizer is used in all systems

Figure 4.2: Assembler code of DO loop with step equal to one
Figure 4.3: Assembler code of DO loop with step different from one
Figure 4.4: The basic structure of an experiment
Figure 4.5: Confidence intervals for ten different parameters
Figure 1.6: Characterization results (C'R.\J'. CYBER, and IBM 3090)
Figure 4.7: Characterization result. s (Amdahl. Convex, and VAX 8600)
Figure 4.8: Characterization results (VXY 785. VAX 780. and SUN 3/50)
Figure 4.9: Characterization results (IBhl RT-PC/125)
Figure 4.10: Characterization results relative to the VAX-11/780 (I)

Figure 4.11: Characterization results relative to the VAX-11/780 (11)
Figure 5.1: Static and dynamic analysis of programs
Figure 5.2: Static statistics for the Mandelbrot set

...................

...............

Figure 6.1: Execution time estimate for the Mandelbrot program
Figure 6.2: Predicted times versus real execution times (I)
Figure 6.3: Predicted times versus real execution times (11)
Figure 6.4: Predicted times versus real execution times (111)
Figure 6.5: Predicted times versus real execution times (IV)
Figure 7.1: Parameters normalized against the VAX-11/780 (I)
Figure 7.2: Parameters normalized against the VAX-11/780 (11)
Figure 7.3: Parameters normalized against the VAX-11/780 (111)

5

10

17

17

22

28

31

32

33

34

35

36

38

42

48

52

53

54

55

60

61

62

V

List of Tables

Table 4.1: Characteristics of the machines ...
Table 4.2: A4rithmetic parameters wi th local operands
Table 4.3: Arithmetic parameters wi th global operands
Table 4.4: Conditional and logical parameters
Table 4.5: Execution control and array access parameters
Table 4.6: Parameters for intrinsic functions ..
Table 4.i: Definitions of terms used in the time analysis
Table 4.8: Sources of experimental error and minimum execution time

Table 4.9: Mean and standard deviation
Table 4.10: Estimates taking the average and the minimum
Table 4.11: Regions in figures 4.6-4.11

.............

.............

.............

.............
Table 5.1: Static and Dynamic statistics of kernel (Livermore Loops)
Table 5.2: Characteristics of the test programs
Table 5.3: The Livermore Loops kernels ...
Table 5.4: Distribution of statements in the Livermore Loops
Table 5.5: Dynamic statistics of test programs (I)
Table 5.6: Dynamic statistics of test programs (11)
Table 6.1: Execution estimates and actual running times (I)

Table 6.2: Execution estimates and actual running times (11)

........................
.......................

Table 7.1: Relative performance between the SUN 3/50 and the IBM RT-PC
Table 7.2: Accuracy of the prediction estimates
Table 7.3: Distribution of execution time for Los Alamos benchmark
Table 9.1: Characterization results for regions 1-3

Table 9.2: Characterization results for regions 4-7

..................................

..................................

12

14

15

15

19

20

23

25

26

29

30

39

40

41

44

45

46

50

51

57

57

58

69

70

vi

Table 9.3: Characterization results for regions 8-12 71

Vii

Machine Characterization and Benchmark
Performance Prediction?

R a j a el H . Sa av edr a-Barr e t a

Department of Electrical Engineering and Computer Science
Computer Science Division

University of California
Berkeley, California 94720

and

Departamento de Ingenieria Electrica
Divisi6n de Ciencias BBsicas e Ingenieria

Universidad A u t h o m a Metropolitana, Iztapalapa
Mexico D.F., Me'xico

ABSTRACT

From runs of standard benchmarks or benchmark suites, it is not pos-
sible to characterize the machine nor to predict the running time of other
benchmarks which have not been run. In this paper, we report on a new
approach t o benchmarking and machine characterization. We describe the
creation and use of a machine analyzer, which measures the performance of
a given machine on Fortran source language constructs. The machine
analyzer yields a set of parameters which characterize the machine and
spotlight its strong and weak points. We also describe a program analyzer,
which analyzes Fortran programs and determines the frequency of execu-
tion of each of the same set of source language operations. We then show
that by combining a machine characterization and a program characteriza-
tion, we are able to predict with good accuracy the running time of a given
benchmark on a given machine. Characterizations are provided for the
Cray X-MP/48, Cyber 205, IBM 3090/200, Amdahl 5840, Convex C-1,
VAX 8600, VAX 11/785, VAX 11/780, SUN 3/50 and IBM RT-PC/125,
and for the following benchmark programs or suites: Los Alamos
(BMK8A1), Baskett, Linpack, Livermore Loops, Mandelbrot Set, NAS Ker-
nels, Shell Sort, Smith, Whetstone and Sieve of Erathostenes.

June 30, 1988

t The material presented here is based on research supported in part by NASA under consortium agreement
NCA2-128, the Mexican Council for Science and Technology (CONACXT) under contract 49992, the National
Science Foundation under grants CCR-82025Ql and MIP-8713274, by the St,ate of California under the MICRO
program and by the International Business Machines Corporation, Digital Equipment Corporation, Tandem,
HewlettPackard, and Signetin.

1
Introduction

Machine performance is described by specifying, in the case of the CPU, the timings
for all instructions, instruction interactions within the pipeline. storage delays and delay
probabilities, etc. This approach for estimating performance is commonly used by com-
puter architecture performance experts in the course of designing a new architecture or
implementing an existing one [PEU77, MAC84, W E 8 2 , EME84. CLA851. This type of
characterization makes it very difficult t o compare machines with different instructions
sets. The standard method of evaluating computers consists of selecting some “typical”
existing programs and running them on the new machine(s), i.e. benchmarking. There are
a number of known problems with this approach [DON87b, WOR84]:

(a)

(b)

(c)

(d)

(e)

Unless the existing programs are modified, they may not take advantage of the
new architect we.

I t is not reasonable to expect that a single figure of merit can meaningfully
characterize a computer system.

Each benchmark is itself a mixture of characteristics, and doesn’t relate t o a
specific aspect of machine performance.

I t is very difficult to infer the performance of the N+l’st benchmark as a func-
tion of benchmarks 1, ..., N.
I t is very difficult to predict the behavior of existing benchmarks on a new
machine, even given the characteristics of the new machine, without running
the benchmarks.

In this work we propose a new method to characterize the performance of computer
systems at the level at which applications are written. This description can be used to
predict the behavior of real workloads. The characterization is via experimental measure-
ment of individual components of performance. We argue that by evaluating machines
according to a number of (somewhat) independent paramet,ers, it is possible t o estimate
performance for a wide range of workloads. This will permit much more valid comparisons
between machines, and expose machine weaknesses or strong points for use by both the
customer (in purchase, and in job assignment among various machines), and by the
manufacturer who can then work to improve the next version of the product.

This report is organized as follows. In section 2 we discuss the limitations of existing
benchmarks and identify the characteristics that must be taken into account in the design
of programs that can be used in the future as industry standards for system characteriza-
tion. Section 3 describes our model for system characterization and performance predic-
tion. In sections 4-6 we present the main modules of our system: the system characterizer,
the program analyzer, and the performance predictor, and describe their principal com-
ponents. In Section 7 we make an analysis of our results, discuss future improvements,
and give a summary of this report.

1

2
Limitations of Benchmarking

In the past few years there has been great interest in performance evaluation caused
mainly by an increase in the number of different new architectures. The number of bench-
marks currently used to evaluate these systems is growing day by day, and new studies of
the performance of these machines appear either in technical journals or in popular maga-
zines. Every new benchmark is created with the expectation that it will become the stan-
dard of the industry and that manufacturers and customers will use it as the definitive
test to evaluate the performance of computer systems with a similar computer architec-
ture. Sooner or later every major user of computer resources publishes its own benchmark
tha t characterized the workload of that scientific institution [BAI85a, BUC85, CLJR76,
MCM861. Most of the time these benchmarks provide useful information only t o the par-
ticular set of users that are represented by the programs. The limitations of benchmarks
mentioned in the introduction are well known, but those objections do not show the fun-
damental problems Kith benchmarking. T o understand why the results obtained with
these programs are inadequate for system characterization, we must discuss in more detail
how to characterize a computer system, and its relation to performance evaluation.

2.1. System Characterization versus Performance Evaluation

Benchmarks, whether they are real programs, synthetic benchmarks, or kernels, have
the problem that they confuse two different things: system characterization and perfor-
mance evaluation. We define system characterization as an n-value vector where each of
the components represent the performance of a particular primitive operation. This vec-
tor fully describes the whole system a t some level of abstraction. From the designer’s
point of view the primitive operations could be the fetching of an instruction stream into
the instruction buffer, a translation buffer miss, branching to a microinstruction, and so
on. Users see the system a t the level a t which they write their applications, and for them,
the primitive functions are the set of operations supported by the language they use. Here
the execution time of each primitive function depends not only on the hardware but also
on the code produced by the compiler, and sometimes on the libraries and the operating
system.

The performance evaluation of a computer system is the measurement of some
number of properties of the system during the execution of a particular workload. The
properties measured may be the total execution time to complete some job steps, the
memory used during each of the different steps, etc. The important thing to note here is
tha t the evaluation depends on the set of programs executed. This means tha t the esti-
mate is valid only for that particular suite. All of the existing benchmarks evaluate the
performance of the system when this system is running that specific benchmark, and the
results thus obtained cannot be extrapolated to other benchmarks or real workloads. This
does not mean that benchmarks are not useful; they provide a good first approximation of
the expected performance of the systems they measure.

Standard benchmarking can be described as an experimental evaluation of alterna-
tives. Each experiment represents a point in the performance space of the system. Only

2

Limitations of Benchmarking 3

by decomposing these measurements and relating them to the characteristics of the bench-
marks can we use them to predict the performance of different workloads. We must start
writing benchmarks that measure basic individual components that affect the performance
of computer systems, and then use these results to evaluate their behavior. This implies
that system characterization and performance evaluation must be seen as two independent
activities. In this model, benchmarking is part of the characterization process. We will
refer to this new kind of benchmarks as system characterizers t o distinguish them from
normal benchmarks. The results obtained with a system characterizer represent different
aspects of the architecture and the software. It is clear that these parameters cannot be
combined to produce a single figure of merit. With only one number it is not possible to
isolate the effects of hardware and software components during the execution of a variety
of applications.

2.2. The R o l e of Experimentation in System Characterization

Experimentation plays an important role in science and especially in fields like Phy-
sics, Biology and Chemistry. Practitioners of these fields use experiments to collect infor-
mation about a phenomenon, and then analyze the data to sustain or refute a hypothesis
about the phenomenon. Experimentation plays the role of predictor-corrector tool in the
development of models and theories. Unfortunately the concept of experimentation in
computer science is not a well defined activity, [DEN80, DEN81, MCC79, FEL791 espe-
cially in benchmarking where experimentation is confused with running programs and
timing their execution times. A hypothesis or model t o validate is almost never present.

An experimental performance evaluation of a computer system must satisfy several
conditions to be considered experimentally sound. First, the results must be reproducible.
This means that independent researchers must be able to produce the same results using
different experiments. The results must also be consistent; the repetition of an experi-
ment must produce the same results. The experiments must be performed in a controlled
environment and the effect of extraneous variables must be quantified. And lastly, a
model of t<he execution of the system must exist so the results of an experiment can be
related to previous and future experiments.

The last condition is especially a weak point in benchmarking. \Ve see experimenta-
tion as the only way in which disputes can be settled regarding the comparative perfor-
mance of different systems and the effect of particular components on the performance of
the system, as the only way of verifying system improvements, and as the only way of
establishing a cumulative tradition in which improvements can be introduced and new
architectures can be evaluated.

3
A Model for Performance Evaluation

Before we present our model for performance evaluation, we will first summarize our
discussion of the last sections. \Ve know that every performance evaluation is relative to
the workload used to make the measurements, and also depends on the characteristics of
the computer. I t is not possible to evaluate a system without knowing the structure of
the workload and the behavior of the different components of the system when the com-
puter executes t.hat workload. In an ideal world, we will expect t ha t for any two machines
there exists an order on their performance. If machine A executes program X faster than
machine B , then if we replace X by any other program we obtain the same relationship.
Unfortunately, this is almost never the case. and in some cases the difference can be signi-
ficant. For this reason some of the goals of performance evaluation (prediction) should be
to help us answer some of the following questions:

- For which set of programs will machine A execute faster than machine B
(without having to run the programs on both machines)?

What are the portions of the programs that will consume more resources in dif-
ferent machines?

What are the components that have the potential of being the bottlenecks in
the execution of some programs?

-

-

Looking at these three questions we can identify different. subproblems that we must
solve in order t o answer them satisfactorily. The first involves the measurement of the
performance of the individual components. This is what we called in the last section sys-
tem characterization. Second, we need to decompose the workload using the same set of
parameters. We should be able to make an analysis of the workload in terms of the
parameters used to characterize the systems. Lastly, in order t o solve the first question,
we need t,o combine the characterization of the system with the analysis of the workload.
This last phase we will call it execution prediction, and is part of the performance predic-
tion of the system. In figure 3.1 we show the different stages of this process.

3.1. A C o m m o n Representation for Programs and Computer Systems

If we want t,o make predictions at the level of user programs and at the same time to
quantify the behavior of the different components of the systems, we need to represent the
systems and the programs using the same model. This model could be the machine code
produced by the compiler, but this approach has several problems. First we need to know
for every machine (in fact for every compiler) the code produced for each of the language
constructs. Second the representation thus obtained is only valid for the machines that
have the same instruction set. I t becomes necessary for the program analyzer t o know the
inner workings of each possible compiler, or t o compile each program in each machine and
then to analyze the object code. IVhat we want is a flexible common representation for all
the systems that is independent of the architecture and the compiler.

4

.A Model for Performance Evaluation h

/--.,

I System ‘ Characterizer ,a

‘1-1’

7- i

A
,/’- Machine ,

(Chararacterizatiod
‘w.’

i

A Program (Statistics

Predictor 5-
(Pedormanee

Estimate
‘U‘

Figure 8.1: System characterization and performance analysis. On the upper left part we see the
system characterization represented as a program (benchmark) executed in a computer and
producing the characterization of the system. On the upper right side we have the program
analyzer, which takes as input an application program and decomposes it (statically and
dynamically) using the same set of parameters used in the system characterizer. The lower
part represents the synthesis of both the characterization and the analysis producing the
performance evaluation of the machine relative to the workload.

The execution time of a program depends on the code produced by the compiler, and
this code is a function of the operations and control statements that a particular language
provides. For this reason the set of parameters t o use as a base in our decomposition of
program and systems must be an abstraction of the operations supported by most of the
machines. and these parameters must be identified with a particular operation or control
statement of the high-level language.

.A Model for Performance Evaluation 6

I t should be clear that the number of parameters depends not only on the number of
operations and control statements that a programming language has, but also on the accu-
racy of the estimates that we want to obtain.

3.2. T h e Class of Systems Studied

A general model that produces estimates of the possible performance for all the dif-
ferent architectures and modes of computations is unlikely to exist in the near future.
Nevertheless this does not mean that it is not possible to obtain a model of the perfor-
mance for a significant number of the architectures, those which have a common mode of
operation. >loreover once w e have a good model for this class of system, it is possible to
extend it t o include more complex architectures. The approach that we use in this
research is to choose a model of computation and obtain a model of the performance for
the machines that share that mode of operation; we will later extend i t to include more
complex systems.

In this study we will restrict ourselves to a particular model of computation, in
which we have in each system a single processor running in scalar mode, and the code gen-
erated by the compiler is not optimized. We will assume that the uniprocessor system
does not support vector operations or, more precisely, that the compiler does not produce
vector operations. We will also assume that the programs are compiled with the optimiza-
tion switch turned off.

The machines described previously correspond to the SISD (single instruction
stream/single data stream) model in the classification made by Flynn [FLYi2]. Although
there is only one processor executing a single stream of data, this does not imply tha t the
processor does not have parallelism a t the level of the execution of machine instructions.
The execution of an instruction can occur at the same time that the next instruction is
decoded and the last instruction is executed.

The characterization of systems with rector operations and/or including optimization
has several problems not present in scalar processing without optimization. Although it is
not difficult to extend the characterizer to include vector operations, using this informa-
tion to predict the execution time of programs requires also the characterization of the
compiler. Only by knowing which DO loops the compiler is capable of vectorizing can we
make an acceptable prediction of the expected execution time. Even if it were possible to
run experiments and detect when a particular compiler will generate vector code and
which vector operations will be executed, we still have the problem of detecting in arbi-
t rary programs the occurrence of possible vectorizations. This requires a program
analyzer as ‘smart’ as any vectorizing compiler; in fact ‘smarter’, because it has t o vector-
ize the same loops for any arbitrary compiler and program.

Optimization is even more difficult to handle. In addition t o the problems men-
tioned in the last paragraph, w e also find that there is not always a clear boundary on
when to apply one optimization instead of another. In fact, applying one set of optimiza-
tions may prevent the compiler from detecting others. The decision of which optimization
to t ry first normally depends on the order in which the optimizations are tried. In some
cases optimization eliminates redundant or/and ‘dead’ code, especially inside DO loops
and this not only affects user programs but also benchmarks, so validating the measure-
ments is even more difficult. Lubeck et al. reported that vector optimization had to be
disabled in order to obtain meaningful measurements on the Fujitsu VP-200 [LUB85]. If

X llodel for Performance Evaluation -
4

we add that most ‘optimizing’ compilers can only perform certain optimizations on some
data types and not in others [LIN86a, LIN86b1, we understand why it requires a ‘super-
optimizer’ to know how a program will be modified in order to make accurate prediction
of the expected execution time of optimized programs. I t is outside the scope of this
research to write such ‘super-optimizer’: we will try to develop other techniques to charac-
terize vectorization and optimization in the future.

3.3. A Linear Mode l for Program Execution

If we want to produce estimates of the time a program or set of programs will take
to execute in some machines, w e will need to produce a model of how the total execution
time is obtained from the individual parameters. One approach used by machine
designers is to obtain the mean execution rate of a system while executing a particular
workload. To do this we decompose the mean instruction execution time I into the sum
of three basic components (MAC841

I = E + D + S (3.1)

where D is the mean pipeline delay per instruction, caused by path conflicts, register
dependencies, and taken branch delays; S is the mean storage access delay per instruction
caused by a cache miss for instructions and operands; and E is the mean nominal execu-
tion time when there are no pipeline delay or storage access delays. In our model we do
not deal with single machine instructions, but with the set of primitive operations sup-
ported by a particular programming language. Each of these primitive operations (param-
eters) is mapped into several machine instructions. Therefore the mean parameter execu-
tion time (P i) is equal t o the mean execution time of that sequence of machine instruc-
tions. IVe can decompose the mean execution time of each parameter as

Pi = Ei+Di+Si (3 4

where the three terms to the right of the equal sign have the same interpretation, but
refer to a sequence of instructions instead of only one.

.As we noted in the last paragraph the major difference between the two models is
that hardware designers are interested in the mean execution time of each machine
instruction, while in our model the set of parameters belong to a higher level of abstrac-
tion. The machine implementation (code produced by the compiler) of these parameters
could be in its simplest case one machine instruction, but in most cases the compiler gen-
erates several machine instructions for each parameter.

The total execution time of a
(when no pipeline delays or storage
the total storage access delay time.

program is equal t o the nominal total execution time
delays occurs), plus the total pipeline delay time, and

where

i = l i - 1

where Ci is the number of times parameter Pi is executed. We can use these equations to
obtain the total execution time of the program as

n n

i = l i - 1
T = C‘i(E(+ Di + S i) = 2 CiPi (3.5)

.A Xlodel for Performance Evaluation 8

Sote that by using a system characterizer written in a high-level program it is nei-
ther possible to measure the mean nominal execution time of each parameter, nor the
mean pipeline delay, nor the mean storage delay. What the system characterizer measures
is the mean execution time (nominal execution plus pipeline delays and storage delays) of
the set of machine instructions that implement each parameter.

3.4. Limitation of the Linear Model
The linear model for the execution time of applications proposed in the last section

has some limitations. \Ye assumed that the time it takes for the execution of n operations
is just the sum of the individual execution times. In highly pipelined machines the execu-
tion time when there is a register dependency conflict. may be several times greater than
the execution time without this delay. As an example consider the CYBER 205 architec-
ture. The scalar processor is derived from the CDC 7600. I t has five arithmetic subunits
within the Scalar Floating-point unit. All of them are pipelined and can accept a new pair
of input operands at every clock cycle (20 ns). The Add/Subtract and Multiply Units each
takes five clock periods to produce a result and return it t o the input of another unit
[IBB82]. Therefore it takes 100 ns from the beginning of the operation to the time the
result is available. The execution time of R operations without any data dependency con-
flicts can take as little as Z O n ns. On the other hand the execution of the same R opera-
tions can take loon ns if each operation has a conflict with the next one. Consider the
following t w o statements

X9 = ((X1 + X2) * (X3 + X4)) + ((X5 + X6) * (X7 + X8))

if we compute their timing diagrams w e find that for the first statement the execution of
the RHS' takes approximately 360 ns (the four adds, that are leaves of the syntax tree,
start execution in the first four cycles, the two multiplications in cycles 7 and 9, and the
last add in cycle 14). For the second statement, the execution of the RHS takes 400 ns
due to data dependencies. However the first statement executes seven operations. while
the second only four. A simple linear model will not predict that the first statement will
execute faster unless the model contains information about the behavior of the processor
when data dependencies are present. Nevertheless we expect t ha t in large programs
discrepancies in different directions will cancel and therefore the total error will be small
compared to the total execution time.

Right Hand Side of the assignment statement.

4
The System Characterizer

System characterizers (t o distinguish them from benchmarks) are a set of experi-
ments that detect, isolate and measure hardware and software features. These features
describe the system and determine its performance. The accuracy of the description
depends on the number and detail of the experiments. A very coarse model would be one
in which all floating point operations are represented by only one parameter. A better
approximation will have as many parameters as there are floating point operations. An
even better one will distinguish the length of the operand (number of bits) and their
storage class. In some systems the time to access a variable depends on whether the vari-
able is local or global.

Each parameter must be measured in a controlled way and, if repetition is used, the
test must be run for a significant amount of time to reduce the experimental error due to
clock resolution. If we view system characterization as an incremental process, we can
build different system characterizers with different degrees of resolution. There are at
least two possible benefits for doing this: (1) in the early phases of the evaluation process,
it is appropriate and cost effective to use an approximation with not too many parame-
ters. (2) If our system model does not detect some features for certain kinds of architec-
tures, new experiments are incorporated or some of the existing ones are replaced with a
minimum number of changes.

In figure 4.1 we present the process of characterization. On the left of the figure we
have a single system characterizer run in several machines executing in uniprocessor scalar
mode and without optimizing the code generated by the compiler. The output produced
by the characterizer is the data base that we will use to produce performance estimates of
the machines, with the help of the program analyzer and the execution predictor. Only
one characterization per computer system is needed in order to estimates the performance
of any program wri t ten in FORTRAN.

As an example, let us consider bow characterization will work in the case of vector
operations. Here we are interested in running some experiments to test the amount of vec-
torization that systems can do. Not only the vector operations that the hardware sup-
ports, but also the kind of language constructs that the compiler can detect as vectoriz-
able. A possible way of characterizing this class of operations is by using two or more
parameters. In the case of memory-to-memory vector machines only two parameters are
needed, the startup time for the vector operation, and the asymptotic execution rate.
This last parameter is the maximum rate at which the processor can execute a vector
operation [HOCSl, HWA84, HOC85, SHI871. For register-to-register machines we need
also the overhead time associated with the stripminingl process, and the length of the vec-
tor registers [BUC87, MARK']. Machines with cache, the performance is also affected by

1 When the number of elements in a vector operation is greater than the number of vector regis-
ters, the instruction must be treated as a sequence of vector operations. This technique is called strip-
mining, and is done a t compile time. Because it takes some time to restart the next operation there is
an overhead associated with stripmining and this overhead is normally less than the vector startup.

9

The System Characterizer 10

4 Machine

I
i

1 4 Ma$re I p(x Characterization

I
I

Characterizer
I I
I

I

Figure 4.1: The same system characterizer is used in all systems

the size of cache: the asymptotic execution rate normally changes for vectors with a length
greater than the size of the cache.

4.1. Machine Implementation of Data T y p e s

T o be useful the system characterizer must be easy to use and portable. Although
FORTRAN has been standardized, there exist several differences between FORTRAN
compilers and machines that makes complete portability difficult to achieve. One of these
differences is the declaration of da ta types. Single precision real variables are imple-
mented in CDC and CRAY machines using one word, which is equal to 64 bits, while dou-
ble precision variables are assigned two words. The CYBER 205 supports another type
named HALF PRECISION (32 bits). On the other hand, IBM 3090/200, VAX-11, and
SUN 3 implement single precision with 32 bits and double precision with 64 bits. Also the
f 77 compiler in UNIX systems implements single precision with 32 bits and double preci-
sion with 64 bits [FEL78]. In VAX machines running ULTRIX the fort compiler accepts
quadruple precision, which is equivalent t o double precision in CDC type machines. One
way to avoid this problem is to specify explicitly the number of bits in the implementation

The System Characterizer 11

of the different data types. In some compilers it is possible to say how many bytes to allo-
cate to the variables by appending at the end of the type an asterisk follow by 2, 4, 8, or
16. But on the CYBER and CRAI' the meaning of the first two options is different.
These are changed to correspond to single precision on those machines. The problem is
more difficult in the case of integer variables. The CDC-type machines support only 64-
bit integers: on the CRAY, integers have 46 or 64 bits?, while in the VAX and SUN
machines integers are implemented either by 16 or 32 bits.

To make a fair comparison between different machines we need to make the evalua-
tion under similar conditions in all sptems. If all the machines are 32-bit microcomputers,
the memory cell unit on all the systems is equal, and if the tests are run under the same
conditions. it is not difficult to make a fair comparison. On the other hand if some
machines are 64-bit mainframes, others 32-bit minicomputers and another subset is com-
posed of 32-bit microcomputers, then is not clear how to make a fair comparison between
the machines. Do we have to test the machines with all the data types implemented with
32 or 61 bits? How do we make a comparison if the machines do not have a common
representation (same precision) of some data types? If some subset of the tests do not
need more than 32-bit real numbers to execute correctly, why do we need to run these
programs using (34-bit variables on the microcomputers? If a test gives erroneous results
when run on a 32-bit machine, what is the point of saying that the machine runs at the
same speed compared to a (34-bit mainframe?

The above discussion gives a hint of the difficulty of making a good comparison
between machines even in the case when these have similar characteristics. The condi-
tions in which comparisons are made should be decided case by case, depending on the
machines and the objective of the study. The purpose of this report is not t o make an
evaluation of some computer systems, but to present a new methodology for performance
evaluation and system characterization. It is for this reason tha t we run our system
characterizer using the particular implementation of single and double precision on each
machine. Table 4.1 gives for each machine the number of bits used in each of the data
types.

4.2. Description of the Sys tem Characterizer's Parameters

Normally the characterization of computers at the architecture level is done using
the instruction set of the machine. On the other hand, the decomposition and analysis of
programs normally reflects the control structures and operators t ha t a particular language
supports [WEI84]. Because our representation of both computers and programs uses the
same set of parameters, results may be combined.

T o understand the set of parameters chosen in our system characterizer, we need to
analyze the set of constructs that FORTRAN provides, and see how these features affect
the execution time of a program. We will then create parameters for the different
mechanisms that affect the execution and ignore those that are only used as aids either to
the programmer or the compilers in the writing of correct and efficient programs. The
constructs supported by imperative or statement-oriented languages, like FORTRAN, can
be separated in four main categories: data type definition mechanisms, expressions,

The default on the CRAY X-MP is 46 bits. There exists a compiler option that extends integers
to 64 bits.

~~

The System Characterizer

Integer
single

46
64
32
32
32
32
32
32
32
32

Table 4.1: Characteristici

\ I

Real
single double

64 128
64 128
32 64
32 64
32 64
32 64
32 64
32 64
32 64
32 64

Machine

CRAY X-hIP/48
CYBER 205
IBM 3090/200
Amdahl 5840
Convex C-1
VAX 8600
VAX-11/785
VAX-11/780
SUN 3/50
IBM RT-PC/125

Name jLocat ion

NASA Ames
NASA Ames

cmsa.berkeley .edu
arnes-prandt.nasa
convex.riacs.edu

vangogh.berkeley.edu
arpa. berkeley .ed u
arnes-pioneer.nasa

orchid.berkeley .edu
jeff.berkeley .edu

of the machine
Operating

System
COS 1.16

NOS
VM/ChlS r.4

UTS V

UNIX 4.3 BSD
UNIX 4.3 BSD

Ultris 2.0
UNIX 4.2 r.3.2

A M 4.3

UNIX C-1 ~6

(I)
Compiler
version

C F T 1.14
FTN2OO

FORTRAN v2
F77

F C v2.2
F77 v l .1
F77 v l . 1
F77 v l
F77 v l
F77 v l

Table 4.1: Characteristics of the machines (11)
Machine

CRAY X-MP/48
CYBER 205
IBM 3090/200
Amdahl 5840
Convex C-1
VAX 8600

VAX-11/780
SUN 3/50

VAX- 11 /785

IBM RT-FCl l25

Memory

8 Mwords
8 Mwords
32 Mbytes
32 Mbytes

100 hlbytes
28 hlbytes
10 Mbytes
2 Mbytes
4 Mbytes
4 hlbytes

12

Table 4.1: Characteristics of the machines. The size of the data type implementations are in
number of bits.

statement-level and unit-level control structures, and simple statements.

4.2.1. Data T y p e Declarations

The da ta type declaration constructs in FORTRAN are used only as direct,ives for
the compiler, and the creation of data objects for the global (COMMON) and local vari-
ables is normally done before program execution. Therefore we do not need to create
parameters for these statements. IVe will see in section 5.2 tha t the declarations of a
FORTRAN program will also help the program analyzer in the decomposition of pro-
grams, in the same way it9 these statements help the compiler to generate correct machine
code. The exception to this situation is the DATA statement, given tha t the initialization
of the variables declared in the DATA must be done at each activation of a program unit.
Normally the DATA statement is used for the initialization of global variables, and there-
fore its effect on the total execution time on scientific programs is small.

The System Characterizer 13

4.2.2. Expressions

FORTRAN is a language for scientific and numeric applications. For this reason the
richness of the language lies in the arithmetic operators that it supports. In addition to
the arithmetic operators, FORTRAN also provides six relational and six logical operators.
Our system characterizer does not distinguished between the relational operators; all of
these operators are grouped in the same class (.EQ., .LE., etc). This is because it takes
the same time to compare two values independent of the relation. The same treatment is
applied to the logical operators (.OR., AND., and .NOT.). In contrast to the logical
operators that can only take as arguments logical values, the arithmetic and relational
operators are polymorphic. This means that, even when the semantic of the operation is
different for different data types, the same name (symbol) is used. By looking a t the
arguments the compiler identifies the correct use of the operator and produces code
accordingly. Because the execution time of a multiplication is different using integer argu-
ments compared with real ones, we have to create a set of parameters that represent the
execution using integer operands and another using real operands. In similar a way the
execution time depends on the precision of the operands; it normally takes less time to
execute an operation with single precision compared with double precision operands.
Another classification is made with the storage class of the operands. Global variables in
FORTRAN (variables defined in COMMONS) are sometimes treated differently from local
variables. An example of this is the way the CYBER 205 deals with variables stored in
COhlllONs, when running without optimization. The compiler treats the COMMON as
an array and allocates a base-descriptor pointing to the first element of the COMMON.
An operand is loaded by first adding the offset (from the beginning of the COMMON
block) to the base-descriptor and then loading the operand. This way of treating simple
variables makes the execution slower when they are allocated as global (variables) as
opposed to local.

The arithmetic operators defined in the system characterizer are: addition, multipli-
cation, quotient, and exponentiation. The addition operator also includes subtraction. In
the c s e of exponentiation with a real base, we distinguish two cases: one when the
exponent is integer and the other when the exponent is real. This is because in each case
the implementation is different. When the exponent is integer the result is computed by
either executing the same number of multiplications as in the exponent (when this is
small), or by binary decomposition. When the exponent is real the result is computed
using logarithms. If the base is an integer, we have two cases, one with the exponent
equal to two and another with an exponent different from two. Because the number of
exponentiations executed in most programs is small, these simplifications are enough for
our purposes.

In tables 4.2 and 4.3 we present a description of the arithmetic parameters measured
by the system characterizer. One table is for local operands and the other for variables
allocated in COMMON blocks.

There are three different subsets of parameters in each table. The first subset is for
single precision real variables; the second for double precision variables; and the last for
integers. Two parameters require explanation. One is the set of parameters t ha t measure
the overhead of the store operation (SRSL, SRDL, SISL, SRSG, SRDG, and SISG), and
the other, what we called memory transfer parameters (TRSL, TRDL, TISL, TRSG,
TRDG, and TISG). In most high-level programming languages it is not possible t o

The System Characterizer

Operation
store

addition
multiplication

division
exp (X ** I)
exp (X ** Y)

memory transfer
store

addition
multiplication

division
exp (X ** I)
exp (X ** Y)

memory transfer

Table 4.2: Arithmetic operators with local oDerands
Data type

real
real
real
real
real
real
real
real
real
real
real
real
real
real

Llnemonic
SRSL
ARSL
hlRSL
DRSL
ERSL
SRSL
TRSL
SRDL
ARDL

DRDL
ERDL
XXDL
TRDL

h,lRDL double
double

SISL
AISL
MISL
DISL
EISL
XISL
TISL

local
local

store
addition

multiplication
division

exp (I ** 3)
exp (I ** J)

memorv transfer

integer
integer
integer
integer
integer
integer
integer

single ' local
local
local

single
single
single , local
single , local
single local
single local

i

Table 1.2: Arithmetic parameters with local operands.

execute a single load operation without executing a t the same time another operation.

This is why we do not have a parameter that measures the time it takes to load a
single operand. These times are included in the execution time of the operators. Another
reason is that some compilers, even when optimization is turned off, load the variables in
registers only once while evaluating an expression3. Even if we measure the time it takes
to load an operand, we are left with the problem of deciding when the compiler will reload
it or use the register that holds a copy of it,s value. On the other hand it is possible to
run experiments that detect and measure the time it takes to store the result of the
expression. In some cases the value of these parameters is negligible (the store operation
overlaps with the execution of arithmetic operators), while on others the time can be signi-
ficant. In an assignment where there are no operators on the right hand side of the equal
sign, the execution time of these statements cannot be explained just by the store opera-
tion. This type of statements are characterized by the 'memory transfer' parameters.

In table 4.4 we give the set of parameters associated with compare and logical opera-
tions for local and global variables. As in the arithmetic case we distinguish the operands
depending on their storage class, the data type and the precision. For the logical opera-
tions there is only one data type and one precision.

3 The compiler does not attempt to eliminate redundant subexpressions; it only keeps a record of
which variables were previously loaded. This information is not used in subsequent statements even
when these are in the same basic block.

The System Characterizer

F M n e mon ic
SRSG
ARSG
MRSG
DRSG
ERSG
XRSG
TRSG
SRDG
ARDG
MRDG
DRDG
ERDG
SRDG
TRDG
SISG
AISG
MISG
DISG
EISG
XISG
TISG

: 4.3: Arithmetic operators with globa
Operation 1 Data tvDe 1 Precision

store
addition

m u It i plic a t ion
division

exp (X ** I)
exp (S ** Y)

memory transfer

real
real
real
real
real
real
real

store
add it ion

multiplication
division

exp (X ** I)
exp (X ** Y)

memory transfer
store

addition
multiplication

division
exp (I ** 2)
exp (I ** J)

memory transfer

~ _ _ _ _ _ _ _

real
real
real
real
real
real
real

integer
integer
integer
integer
integer
integer
integer

Table 4.81 Arithmetic operations with global operands.

single
single
single
single
single
single
single
double
double
double
double
double
double
double
single
single
single
single
single
single
single

iperands
Storage class

global
global
global
global
global
global
global
global
global
global
global
global
global
global
global
global
global
global
global
global
global

I Table 4.4: Conditional and 1
Mnemonic

ANDG
CRSG
CRDG
CISG

Operation
AND and OR

compare
compare
compare

AND and OR
compare
compare
compare

Data type
logical

real
real

integer
logical

real
real

integer

tical Darametera
Precision

single
single
double
single
single
single
double
single

Storage class
local
local
local
local

global
global
global
global

Table 4.41 Conditional and logical parameters with local and global operands.

4.2.3. Statement-Level Contro l Structures

FORTRAN has eight different flow control statements that affect the execution of a
program and only a few of them have an effect on the execution time. Here we will
present each of the different types of statements and discuss their impact in the execution
time of the programs when using these constructs. We will also indicate the parameters
associated with these statements.
- GO TO s tatements: there are three different types of GO TO statements. the

unconditional GO TO statement, the assigned GO TO statement, and the computed

The System Characterizer Id

GO T O statement. The unconditional GO T O is the most used of the three and also
is the fastest t o execute. In most machine this statement is implemented by a single
machine instruction, but in pipeline architectures the cost of a pipeline stall can be
significant if its target is not in the CPL' prefetch buffer. LVe created one parameter
(GOTO) to measure the mean execution time of an unconditional branch. \Ve do not
take into account the distance from the source of the branch to its target.
Branches affect the execution of a program in several ways. In pipelined machines a
penalty must be paid when a branch is taken and the target instruction has not been
previously fetched4. All partially executed instructions in the pipeline must be dis-
carded and the new stream of instructions must be fetched [LEE84]. .A branch to an
instruction tha t is not in the cache involves not only fetching the next instruction,
but in addition the miss ratio is affected by changing the spatial locality of the exe-
cution [SMI82].

The computed GO T O statement is the equivalent of the case and switch state-
ments in PASCAL and C respectively. The control of the transfer is the value of an
integer expression. The implementation of this instruction uses a table and executes
and indirect branch with the integer expression as an offset. This usually requires
the execution of several machine instructions, like loading the value of the control
variable from memory, selecting the branch displacement from the branch table. and
branching to the new instruction. The execution time of this instruction is normally
one order of magnitude greater than the unconditional branch. In fact for some
machines the characterizer did not detect the execution time of an unconditional
branch. We measure the execution time of this instruction with the parameter
GCOM.
The assigned GO T O statement is an old and rarely used feature in FORTRXN; its
purpose is t o control the transfer to the value of an integer variable that was previ-
ously assigned the value of a label. In the system characterizer and the program
analyzer this construct is treated in the same way as the computed GO TO.

DO loop statement: this mechanism controls the repeated execution of a group of
statements. The execution overhead associated with this statement may be signifi-
cant in scientific applications running in scalar mode. Its implementation has two
parts, the initialization of the control variable, limit and step, and the repetition con-
trol overhead. The first overhead is insignificant and in fact in the first versions of
the characterizer there was no parameter associated with it. In programs where
small loops (few iterations) are nested inside other loops, the initialization overhead
may affect the total execution time. In the system characterizer we haye four
parameters t ha t deal with DO statements due to implementation differences in most
machines. In FORTRAN there is the possibility of omitting the step value of the
header of the loop, and the compiler assigns one to the step by default5. The code
produced by most compilers when the step is one is different than the code when the
step is not one. In figures 4.2 and 4.3 we see the code produced by the CYBER 205
FTN200 FORTRAN compiler for these two cases.

-

4 Even in machines that have some kind of branch prediction circuitry, a penalty must be paid

6 D. Knuth reports that 80% of the DO loops have a step value of 1 [KNu71].
when the prediction is incorrect.

~ ~

The System Characterizer 17

D O l I = J . K
. . .

1 COlTIlTUE

RTOR #l , C-4 ; load #l i n t o r e g i s t e r C-4 (s t e p)
RTOR K, C - 5 ; load K i n t o r e g i s t e r C - 5 (l i m i t)
RTOR J , I ; load J i n t o v a r i a b l e I (c o n t r o l v a r i a b l e)
IBXLE,BRF C - 5 , , L 2 ; is u p p e r l i m i t l e s s t h a n l o w e r l i m i t ?

L1 * . .
. . . ; body of l o o p

...
IBXLE,BRB I , C-4 , L 1 , C - 5 , I ; i n c r e m e n t I b y C-4, compare

L 2 ; w i t h C - 5 , b r a n c h t o l a b e l L1
; i f l e s s e q u a l , and s t o r e v a l u e i n I

Figure 4.2: Asernbier code of DO loop with step equal one

DO 1 I = J, K , L
...

1 COBTIHUE

SUBX K, J , PR-3 ,
ADDX L , PR-3 . PR-4 ,
D I W P R - 4 , I , PR-5 ,
TRU P R - 5 , PR-6 0

RTOR P R - 6 , C-4
RTOR #O, C - 5
RTOR L , C - 6
RTOR J, I .
IBXLE, BRF C - 4 , , L2

...

... ,

...
ADDX I , C-6, I ,
IBXLE,BRB C - 5 , tl, L l , C - 4 , C - 5 ;

L2

t h e s t a t e m e n t DO 1 I = J, K , L is
t r a n s f o r m e d t o t h e e q u i v a l e n t s t a t emen t
DO 1 C - 5 = 0, C-4 - 1, 1
where C - 4 = [(K - J + L) / L]

load #O i n t o r e g i s t e r C - 5
load v a r i a b l e L i n t o r e g i s t e r C-6
load J i n t o v a r i a b l e I
is u p p e r l i m i t l e s s t h a n lower l i m i t ?

L 1
body of l o o p

i n c r e m e n t I by r e g i s t e r C-6
i n c r e m e n t , t e s t , and b r a n c h i n s t

Figure 4.8: Assembler code of DO loop with step different from one

As the two figures show, the initialization and iteration overhead are different, and
in the second case can significantly affect the execution of the program when we have
various DO loops nested. In the system characterizer there exist two parameters for

The System Characterizer 18

each type of DO loop. For loops with step equal one the initialization and repetition
overhead are called LOIN, and LOOV. In the other case the parameters are LOIS
and LOOX. llaking a good measurement of the overheads incurred by the DO loop
statement can be difficult.
IF statements: there are three different type of IF statements in FORTRAN, the
block IF. the logical IF, and the arithmetic IF. The block IF statement is a new
feature incorporated in the FORTRAN 7'7 standard and represents the if-then-else
mechanisms of .\LGOL-like languages. In fact the logical IF is a special case of the
block IF, when no else clauses are used a d the then part of the if contains only
one executable statement. If we analyze the effect of a block IF statement in the
execution time, we will notice that the only overhead incurred by this statement is
the same as the one produced by a conditional branch instruction. We can see this
by looking at the next two examples

-

L = I .EQ. J .OR I .NE. K

where I , J , and E; are integers and L is a logical variable, and

IF (I EQ J OR I NE K) GO TO 1

The machine code produce by the compiler for the right hand side of the assignment
and for the expression inside the parenthesis in the IF statement is the same, even
for compilers that short-circuit expressions. The same situation occurs in the case of
the else and elseif statements. The arithmetic IF is handled in a similar way. This
statement has two parts; one is the evaluation of an arithmetic expression, and the
other is a jump to one of three possible targets. The arithmetic expression is
analyzed as any other expression and the branch is replaced by a computed G O T 0
statement.

- CONTINUE statement: this construct is not an executable statement and its
occurrence in the source program should affect the execution time of an application.

CALL and RETURN statements: the first statement transfers control from one
unit t o another and the second statement returns the control t o the original caller.
Also included in the CALL statement are the set of parameters that are passed from
one subprogram to another. The overhead incurred by the execution of the CALL
statement is considerable and can be divided in three parts: the overhead incurred in
the passing of arguments, the prologue overhead and the epilogue overhead. This
last part is the code executed by the RETURN statement. The amount of work that
has to be done depends on the number and type of the arguments. In FORTRAN all
the arguments are passed by reference including values computed by expressions.
The characterizer has three parameters, these are: ARGS, ARGD, ARGI. These
measure the time to load the corresponding pointer t o single precision, double preci-
sion and integer variables either into the static environment of the callee subprogram
or in the execution stack. Although FORTRAN uses static allocation, many
machines use the execution stack t o pass parameters and results between subprogram
units. The addition of the prologue and epilogue execution time associated with the
invocation of a unit program is characterized by the parameter PROC, even when
each of them is executed in different subprogram units and at different moments.

-

The System Characterizer

- STOP and PAUSE statement: these instructions do not generate
overhead, and therefore there are no parameters for these statements in
characterizer.

Table 4.5: Execution control and array access Darameters
[nemonic
PROC
AGRS

AGIS
ARR 1
ARR2
ARR3
ARR4
ARRN
IADD

AGRD

GOT0
GCOM
LOIN
LOOV
LOIX
LOOX

Operation
procedure call
argument load
argument load
argument load

array wi th 1 dimension
array with 2 dimensions
array with 3 dimensions
array with 4 dimensions

array with 2 5 dimensions
addition in array index

simple goto
computed goto

do loop initialization step 1
do loop overhead step 1

do loop initialization step n
do loop overhead step n

Data type
na

real
real

integer
na
na
na
n a
na

integer
na
na
na
n a
na
na

Precision
na

single
double
single

na
na
n 3
na
na

single
na
na
n 3
n a
na
na

i9

significant
the system

Table 4.6: Execution control and array access parameters.

4.2.4. Addit ional Parameters

In addition to the parameters presented in the last subsections, there are also other
parameters that , although they cannot be associated to any particular statement or opera-
tion, have a significant execution time and should therefore be included in our model.
The first subset deals with the overhead associated with the access of a value stored in an
array. If the variable referenced by the program is stored in an n-dimensional array and
the value of the indices that determine the particular element are not known at compile
time, the compiler must generate code t o compute the actual address at execution time.
There are three parameters that measure this overhead: ARR1, ARR2, ARR3. Each
measures the additional time it takes to access a variable in an array of one, two and
three dimensions. The overhead for variables in four and five dimensions (ARR4, ARRN)
is computed using a linear combination of the three basic parameters. We do not consider
a more detailed characterization of array references, because, in our benchmarks, they
were very few arrays with more than three dimensions and no examples of more than five.

Intrinsic functions form the last subset of parameters. Although the number of times
these instructions are executed in a program is small, their execution time is normally
very large compared with tha t of a single arithmetic operation. These parameters are
shown in table 4.6 for single and double precision real arguments. The execution time of
an intrinsic function is not always constant and normally depends on the magnitude of the
arguments. As an example, consider how the IBM 3090/200 computes the sine function
[IBM87]. In the computation, the execution time of several steps depends not only on how
large is the argument, but also on how small is its difference from the nearest multiple of

I

The System Characterizer 20

71. Depending on the magnitude of this difference a polynomial of degree one, three, five,
or a table and additional arithmetic is needed to compute the result. The CRAY S- l IP
library reference manual [CRA84] contains a table with execution times for most of the
intrinsic functions. In most cases the difference between the maximum and the minimum
time is less than 20%'. However for programs with a large number of calls to these func-
tions. a better characterization may be needed to obtain acceptable predictions.

Table 4.6: Parameters for intrinsic functions
hlnem on ic

EXPS
LOGS
SINS

TANS
SQRS
EXPD
LOGD
SIND

TAND
SQRD

Operation I Data type I Precision 1 Storage class
exponential
logarithm

sine
tangent

square root
exponential
logarithm

sine
tangent

square root

I real
I 1 ;;;

real
real 1 real

j real
I real

single
single
single
single
single
double
double
double
double
double

local
local
loc a1
local

local
local
local
local
local

~

Table 4.6: Parameters for intrinsic functions.

4.3. Experiment Design

Timing a benchmark is very different from making a detailed measurement of the
parameters in the system characterizer. For some benchmarks the system clock is enough
for timing purposes, and repetition of the measurements normally produces an insignifi-
cant variance in the results. On the other hand, the measurement of the parameters of a
system characterizer using a high level program is not easy due to a number of factors:

-
-
-

The short execution time of most operations (20 nsec - 10 psec)

The resolution of the measuring tools (2 1 ps)

The difficulty of isolating the parameters using a program written in FOR-
TRAN

The intrusiveness of the measuring tools

Variations in the hit ratio of the memory cache

External events like interrupts, multiprogramming, and 1/0 activity

The need to obtain repeatable results and accuracy

-
-
-
-

The parameters in the system characterizer are composed of single or a small
number of machine instructions; for this reason, the events we want to characterize have a
duration of ten to thousands of nanoseconds. T o achieve a meaningful measurement of
these events using a high-level program and with the resolution of most system clocks

8 The maximum difference reported is 100% for the arc cosine.

The Systjem Characterizer 2:

requires clever tests, especially when the characterizer is used in different machines, each
with different machine instruction sets and architectures.

To isolate an operation for measurement normally requires robust tests t o avoid
optimizations7 from the compiler that would eliminate the operation from the test and
distort the results [CLA86]. Different, techniques must be used, in particular avoiding the
use of constants inside the test loops: using IF and GO TO instructions instead of the DO
LOOP statement to control the execution of the test; initializing variables in external pro-
cedures to avoid constant folding. Separate compilation of variable initialization pro-
cedures, to make sure that the body of the test does not give enough information to the
compiler to eliminate the operation being measured from inside the control test loop.

4.4. Test Structure and Measurement

The events that we want to measure and characterize have very small execution
times. For this reason it is not possible to make a direct measurement of a single execu-
tion in most systems. The clock resolution in many machines is bigger than the execution
time of a single operation. In machines with the UNIX operating system, the clock resolu-
tion is almost always 1/60’th of a second. This value is several orders of magnitude
greater than the time it takes to execute almost any operation. In addition the overhead
incurred by executing the clock routine affects our measurements. One way of reducing
these factors is t o repeat the test some number of times to obtain a measurement tha t is
much greater than the errors produced by the clock resolution and the overhead of the
timing routine combined. There are problems associated with this technique. In a machine
with cache memory the value obtained for the execution time of a single operation using
repetition is smaller than the execution time of a single operation when the arguments are
not previously in the cache. The results obtained in this way will indicate that the system
is faster than in the case when the arguments are not in the cache. Nevertheless there are
at least t w o arguments that support using repetition. The first one is that the very idea of
using cache memories in computer systems is because programs tend to satisfy the princi-
ple of locality. The second reason is that we expect that the error incurred by using
repetition will be small compared with the experimental error, especially if we take into
account that the cache hit ratio of typical applications is high.

Figure 4.4 shows the structure of the tests in our system characterizer. We can iden-
tify five parts in each experiment. The initialization, in which the number of iterations
of the body of the test is computed. For each test we have to make sure that it will exe-
cute for a minimum amount of time in fast machines, but not for too long in slow sys-
tems. T o control this we have three parameters, the SPEEDUP factor (> 0), that gives a
crude approximation of the relative performance of the system compared to the CRAY
X-MP/48, the number of iterations (LIMITO) it takes the CRAY X-MP/48 to execute the
test for one second, and the duration of the test (TMAX). This last parameter will permit
us to control the execution as a function of the resolution of the clock and the variance of
the measurements. The t e s t is the code included in the two lines with ellipsis, and is the
instruction or group of instructions tha t we want t o characterize. The additional code

Even when we compile without optimization, compilers try to apply some standard optimizing
techniques, like constant folding, short-circuiting of logical expressions, and computing the address of
an element in an array.

The System Characterizer 22

LIMIT = L I M I T 0 * SPEEDUP * TMAX
DO 4 K = 1 , REPEAT

1 COUBTER = 1
TIME0 = SECOlYD 0

2 I F (COUBTER . G T . LIMIT) G O TO 3
...
body of the test

COUNTER = COUBTER + 1
GO TO 2

. . .

3 TIME1 = SECOlYD 0
I F (TIME1 - TIMEO . G T . TMAX) GO TO 4
L I Y I T = T U X * LIMIT / (TIME1 - TIMEO)
GO TO 1

4 SAMPLE(K) = TIME1 - TIMEO
CALL STAT (REPEAT, SAMPLE, AVE, VAN

Figure 4.4: The basic struct.ure of an experiment.

delimited by the two invocations to the SECOND function (timing function) is what we
called an observation. Here we control the number of times the body of the test is exe-
cuted, so we can obtain a meaningful observation. The additional code delimited by the
DO loop represents the ezperiment. This consists of a set of observations (controlled by
the variable REPEAT). The last part is the computation of the measurement. In this
par t we compute the mean value of our observations and the variance. To control the
error in our measurements we have t w o possibilities; one is to run each test for a signifi-
cant amount of time; the other is to increase the number of observations inside the experi-
ment. In the first case we increase the number of iterations that the body of the test is
executed (increasing the value of LIhlITO and LIMIT in figure 4.4). In the second case we
execute the body of the test the same number of times, but increase the size of the sample
statistic (increasing the value of variable REPEAT). In section 4.5.1 we discuss the effect
of each one of these possibilities.

4.4.1. Direct Tests, Composite Tests and Indirect Tests
To understand the possible sources of experimental error, and how t o compute them,

we need the concepts of a ‘direct test’, ‘composite test’ and ‘indirect test’. As we explained
in the last paragraph, inside of the ‘if-loop’ construct we have the test. Now in a direct
test the body of the test consists of N occurrences of the operation we want t o character-
ize and nothing more. In a composite test in addition to the N operations there are
several other operations of different type inside the body. This is necessary because in
most of the cases it is not possible to make a direct measurement of the parameters, and
we have to include some additional operations. In an indirect test the execution time for
the operation we are measuring (P i) is obtained by running two different tests. Some
parameters of the system characterizer are coupled; it is not possible to execute one
without executing the other, and therefore the way to isolate one of the parameters is to

The System Characterizer 23

run two tests with different number of operations for each of the parameters. The body
of the second test is the same as the body of the first test, plus some additional work. The
difference in the execution time between the two tests gives us the value of one of the cou-
pled parameters. An example of this is the DO loop initialization and overhead. Every
time we have a DO loop in a FORTRAN program, the compiler generates code that
includes the initialization of the loop and also the overhead to control the iteration. By
changing the number of times the loop is executed, in two tests, we can obtain a pair of
linear equations to compute the values of the initialization and the overhead. In the next
subsection we will see that the variance of our measurements depends on whether the
obserntions are done using direct, composite, or indirect tests.

4.5. Experimental Errors and Confidence Intervals

As we pointed out in the last section, one of the important parts of the characterizer
is to control the accuracy and exactitude of our measurements. In order to make an
evaluation of the quality of our measurements, we need to quantify the sources of error in
our experiments. Currah gives a long list of the causes in the variability in CPU time as
measured by the system clock [CURiS, MER831. Some of these factors are: (a) Timer
resolution of CPU clock. (b) Improper allocation of CPU time for 1 / 0 interrupt handling.
(c) Changes in cache hits due to interference with concurrent tasks. (d) Cycle stealing
while another component is sharing a resource with the CPU. (e) Number of context
switches: the time spend by the dispatcher and timer routine before dequeuing or after
enqueing a process. Some of these events have a length of time far greater than the
phenomena that we are measuring.

We also have t o subtract the execution time of the code tha t controls our test and
the overhead incurred by the timer routine. These measurements have their own variance
and the subtraction of these overheads increases the variance of our measurements. All
the factors combined can be significant compared to the magnitude of our results. IVe
will now proceed to quantify the sources of variability and obtain expressions for the vari-
ance for the different types of experiments.

We denote the factors affecting our measurements as follows:

Table 4.7: Definitions of terms used in the time analysis
Tio ::= CPU time before the observation (TIMEO)

CPU time after the observation (TIME1) Til
Cowrhead ..- overhead involved in the timing function
IFowrhead .._ ..- overhead involved in the if-loop control

Nlimit

Nrept
q j
0 .. - sample mean of each observation (measurement)
B .. - sample mean execution time of the test
Pi .. - sample mean of parameter i

::=
..-

.._ ..-

.._ ..-
number of times the body is executed (LIMIT)
number of observations in the experiment (REPEAT) ..- ..- observation j

.._

.._

.._
U 2 ::= variance operator

We know that each observation Oi is equal to

Oj = Tj, - Ti, (4.1 1

The Sy tem Charact.erizer 21

then rhe mean value (6) of these observations is

and i t5 variance

(4 .2)

(4 .3)

Sow the mean value of each experiment is equal to the time it takes to execute the
body of the test Nlimit times, plus the overhead of the timing function

6 = Nlimit (B + ~ ~ o u r r w) + cotlethead (4.4)

where B is the mean time it takes to execute once the body of the test. iVe can compute
this d u e and the variance with the equations

and

To obtain the mean value of parameter pi we need to know if the test is direct, com-
posite or indirect. Let N be the number of times parameter pi is executed inside the body
of the test, then the mean value and variance of parameter pi in a direct test are

f f 2 B $pi = -
” N 2

- B , pi = -

In a composite and indirect test we have

(4.7)

where \Vetm is the additional work inside the body of the test or in the second test.

Looking a t the above equations we can see that there are four factors affecting the
magnitude of the variance in a direct test and five for composite and indirect tests. These
factors are: the resolution of the timing function; the variance of our observations; the
variance of the execution time of the timing function; the variance of the IF control state-
ments: and the variance of the additional work executed inside the body of the test or by
the second test. If the execution time of each observation is such that we have

then the only factors that affect our measurements are the dispersion of our observations,

The System Characterizer 25

0.47 ps
0.64 ps
0.95 ps
0.27 ps
1.04 ps
1.31 ps
4.42 ps
5.86 ps
1.49 ps
2.79 ps

affected by concurrent activity on the system, and the variance in the execution time of
the extra work present in the composite and indirect tests.

Table 4.8 gives the experimental values for Creeolution, Coverhead, ZFover,read, and the
minimum duration of one observation (Tmh) such that the magnitude of the right hand
side of equation 4.9 is less than five percent the magnitude of O j in a direct test.

112 ps
124 p s
10 rns

200 rns
205 rns
338 rns
346 rns
351 rns
414 rns
344 rns

Table 4.8: Sources of ExDerimental Error
System Cre8olution

1.0 ps
1.0 ps
1.0 ps

10.0 rns
10.0 rns
16.F rns
16.F rns
16.6 rns
20.0 rns

IBM RT-PC/125 ! 16.F rns

CYBER 205
Arndahl 5840
IBM 3090/200
Convex C-1
VAX 8600
VAX-111785

Sun 3/50

CRAY S-\lP/-l8

VAX-11/780

IzZT
2.3 ps
2.6 1 s

475. ps
376. ps
276. ps
175. ps
585. ps
825. ps
713. ps r 507. ps

Table 4.81 Sources of experimental error. T- gives the minimum time that a test must be run
to reduce the error due to the resolution and cd1 overhead of the clock, and overhead of the
test to less t.han 5 percent in a direct test.

4.5.1. Reducing the Variance

We have two ways of reducing the variance of our results and therefore the size of
the confidence intervals. The first is by increasing the length of the test by augmenting
the value of Nlimit. But the problem is that by doing this the probability of a context
switch increases and also the possibility of a cache flush that will be reflected in higher
cache misses. The second possibility is to increase tlhe number of observations in each
experiment (N r e p t) . Because each of our observations is an independent and identically
distributed random variable we can apply classic statistics and therefore the confidence
intervals for our measurements will be reduced by the square root of the number of obser-
vations made in each experiment. On the other hand by increasing the number of obser-
vations, the probability that an event in the system occurs increases (e.g. swapping, the
update of the superblock in UNIX every 30 seconds, etc) and this will increase the vari-
ance.

In some measurements using indirect tests, the variance obtained can be significant
compared to the actual measure. We can see this by considering the following case. T o
measure the overhead and initialization of the DO loop statement we run three experi-
ments. In the first case the test consists of a DO loop with some extra statements inside
the loop (to prevent elimination by the compiler) that is executed N times. In the second
test the loop is executed 2 N times. For the third test the loop executes N times, but the
extra work inside the loop is twice as much as in the other tests. We can express the
above conditions in terms of the mean execution time of the body of each test (Eli).

The System Characterizer

Parameter Mean (p) Std. Dev. (u)
BI 69.9 p s 1.49 ps
8 2 127.3 ps 5.74 ps
B 3 107.4 ps 4.53 ps

Doinitialization 12.5 P S 9.11 ps
DO,,TM 1.99 ps 0.73 ps

26

u / p (%)
2.13
4.51
4.22
72.9
36.8

it is easy to see that we can obtain values for DOinitialiration and DOoverhead and their vari-
ance in terms of the Bis.

and

(4.12)

In table 4.9 we give results obtained on a VtuC-11/785 for a sample statistic of size
five and each of length of one second. We can see that even when the sample standard
deviation is small (< 55) for the €lis, in the case of the DO loop parameters the standard
deviation is very large.

Table 4.9, hlean and standard deviation. Relative magnitude of the standard deviation com-
pared to the sample mean for l)o,nt,d,d,m and D O d . Each test consists of 5 observations
executed for 1 second on a VAY- 11/785.

I t is therefore important to know what are the values for Nlimit and h',,, that will
give a small standard deviation in our measurements. These values are system dependent
and are affected by the resolution of the clock, the concurrent activity on the system, etc.
In figure 4.5 we show the normalized confidence interval of ten parameters for values of
NIiAt such that the each test is run for at least 0.1, 0.2, 0.5, 1.0, 2.0 and 4.0 seconds on a
Vax-11/780. We also obtain measurements for NE,, equal to 5, 10 and 20 observations.
The confidence intervals for Pi are obtained using the Student's t distribution and the
standard error of pi as follows

L

and the normalized confidence intervals are

(4.13)

(4.14)

The System Characterizer 27

We can see tha t for a fixed value of N,,, the confidence interval of our measure-
ments decreases as the time of the test increases. but for small values of Nnept , there is a
limit to how much we can decrease the confidence interval by increasing the time of the
test (,Yliht). The reason for th i s is that by increasing the length of the test we reduce the
variability due to short term variations in the concurrent activity of the system. However
the probability of a change in the overall concurrent activity of the system increases with
a larger test. This change may produce a greater variance if the size of the sample statis-
tic is small. \Ve see that the best results are obtained for 20 observations and 1 to 2
seconds for duration of the test. In machines w i t h good clock resolution acceptable results
are obtained for 10 observations and .2 seconds for each test.

In our system characterizer each test executes for a t least 2 seconds on a CRAY S-
MP. X potential problem with this is that a test that runs for 2 seconds on a CRAY S-
MP usually takes much longer on most systems. A system characterizer constructed in
this way will have an excessive execution time, and therefore will be unsuitable for bench-
marking. To avoid this problem we calibrated each test t o execute for 2.2 seconds in the
CRAY S-;LIP/18 and adjusted each particular test according to a ‘speed-up’ factor that
approximates the ratio of performance between the CRAY X-MP/18 and the system we
are characterizing. Even with this approximation the execution time of each test will not
be equal to 2.2. 11 the actual running time is greater than 2.2 seconds we keep the meas-
urement, because this value reduces the experimental error even more. In the other case, if
the time is less than 2 seconds, t,he system characterizer computes a new approximation
and runs the test again. The gap between 2 and 2.2 reduces the possibility of unneces-
sarily repeating the test. At the beginning of the execution of the system characterizer,
the system runs four tests that measure the clock resolution, the clock routine overhead,
the test control overhead, and the speed-up factor. With these four quantities the system
characterizer computes the execution times needed in each test t o run for 2 seconds.

4.6. Is t h e M i n i m u m Better t h a n t h e Average?

In the previaus section we mentioned that to obtain the expected execution time per
parameter we have to compute the average of a number of observations. The .noise’ in
our measurements is the result of concurrent activity in the system and the resolution of
our measuring tools. In most systems an increase in the execution load produces an
increase in the real and CPU time of programs. The time we measure for the execution of
a basic operation is always greater or equal to the ‘real’ execution time when there is no
other activity. Therefore it should be better to take the minimum instead of the average,
given that the minimum is always less or equal than the average. By doing this we reduce
the discrepancy between our measurement and the ‘real’ execution time.

The main objective of this research is to characterize the actual performance of sys-
tems, and when these systems are used in everyday situations there is always some degree
of concurrency present. We expect that if we filter the extra time due to this concurrency
our predictions will tend to be less than the actual running time of programs. However
the only way that we can be sure that this is the case is t o characterize some systems
using each of these techniques and see which of them produces better estimates.

We ran the system characterizer twice in the Convex C-1 taking first the average
and then the minimum, and used these results to estimate the execution time of a work-
load composed of ten program. The difference in the value of the parameters was

c - I . - .- - r q F 1'; The System Characterizer
GC, &Jnssn

90 percent confidence intends Irwrmdued)

5 mgsuments UI och test

-31 - - --kl
I I I 'CEa. I

I I AR%
I

0 1 s ~ ~ 02- 06- 10- '20- 40-

90 pemm confidence intends (normdid)
,

30 mgsuments in mh t e ~ f 1
I

!

0.1 sec 0.2 sa 0.6 sa 1.0 sec 2.0 sa j
(4

a confidenac intend of length t.ro

W i t u d e of the n-twmmem
(om unir och ride) the

I

28

F b r e 4.6: Confidence intervals for ten different parameters. In (a), (b), and (c) we show how
the length of the test and the number of observations affect the confidence interval of the
measurements. For a fixed number of observations an increase in the execution time of the
test tends to reduce the length of the confidence interval. Figure (d) shows all the confidence
intervals for three of the ten parameters. All confidence intervals are normalized with
respect to parameter Pi.

The System Characterizer 29

between 2-15%. Taking the average of the measurements produced the smallest error in
the total execution time of the workload as we can see in table 4.10.

Table 4.10: Estimates taking the average and the minimum
Machine 1 Real Time /I Average I Error 11 Minimum I Error

Convex C:l- I 543 sec 11 551 sec 1 1.47 % 11 499 sec I 8.10 %

Table 4.101 Estimates taking the average and the minimum. The execution time of a workload
of ten programs u’x predicted with the set, of parameters obtained using the average and
the minimum of the measurements.

4.7. Resu l t s Obtained with the System Characterizer

We executed the system characterizer in the ten machines shown in table 4.1, and in
figures 4.6-4.9 we present the experimental values that we obtained. In the appendix (sec-
tion 9) we show the results in tabular form. Table 4.11 explains the meaning of each of
the twelve regions in which the set of parameters have been grouped. The number of
each region is printed at the top of the first graph in each of the three figures. Each point
in the graphs represents the execution time for a single operation in nanoseconds. Some
parameters have value zero. as for example, the execution time for the G O T 0 operation
in the Convex C-1, or the addition of a constant t o an index, if the index is a component
of an array. This happens when the execution time of a parameter is small and its execu-
tion overlaps with other operations; the total execution time does not depend in the
occurrence of the parameter.

In figures 4.10-4.11 we show the results for all the machines normalized with respect
t o the VA4X-11/780. There are several interesting patterns in these figures that give infor-
mation about, the characteristics of the machines. First, we can see that the execution
times for operations accessing local variables are similar to the times obtained for global
variables in all the cases except for the CYBER 205. In this machine the operations using
global variables take longer time to execute, and can take as much as ten times longer as
in the case of the integer zdd operation and the AND operation. IVe corroborate this
observation by looking at the same parameters compared with the ones obtained for the
CRAY X-hlP. We can also see that to execute floating point operations with single preci-
sion arguments, the CRAY X-MP has better times than the CYBER 205, and the IBM
3090. But if we look at the same operations with double precision operands, we find tha t
the times for the CRAY X-MP are greater than the ones obtained for the CYBER 205,
IBM 3090, and Amdahl 5840. Moreover, in the case of addition, multiplication and divi-
sion, the Convex C-1 and the VAX 8600 have smaller times than the CRAY X-MP. We
can see from the graphs and tables that the high performance of the CRAY X-MP when
running in scalar mode and without optimizations lies in the fast execution of the arith-
metic floating point operations with single precision.

It is important to point out that double precision on the Convex, the various VAX
machines and the Sun is 64 bits against 128 bits on the other machines. The purpose of
this research is t o present a new methodology of performance characterization and not t o
compare different machines. A serious evaluation of their performance must address the
problem of data type representation carefully in order t o make a fair comparison.

Table 4.11: P a r a m e t e r reaions in fiaures 4.84.11

Region Set of Parameters
1 real operations (single), local operands

01 SRSL store
02 ARSL addition
03 MRSL multiplication
04 DRSL division
05 ERSL
06 XRSL
07 TRSL memory transfer

exp (S ** I)
exp (X ** j ’)

2 real operations (double), local operands
08 SRDL store
00 ARDL addition
10 MRDL multiplication
11 DRDL division
12 ERDL
13 XRDL
14 TRDL memory transfer

exp (X ** I)
exp (X ** Y)

3 integer operations, local operands

Region
4

5

6

15 SlSL
18 AlSL
17 MlSL
IS D E L
10 E E L
20 XISL
21 TISL

23 ARSG
24 MRSG
25 DRSG

store
addition
multiplication
division
exp (I ** 2)
exp (I ** J)
memory transfer

addition
multiplication
division

20 SRDG
30 ARDG
31 MRDG
32 DRDG
33 ERDG
34 XRDG
35 TRDG

store
addition
multiplication
division
e.xp (X ** I)
exp (X ** Y)
memory transfer

I I

logical operations with local operands
43ANDL I A N D k O R

intrinsic functions (single precision)

7b

Set of Parameters
reai operations (single), global operands

8

10a

44 CRSL compare, real, single
45 CRDL compare. real, double
46 ClSL compare, integer, single

51 PROC procedure call
52 AGRS
53 AGRD
54 AGIS

function call and arguments l3

argument load, real, single
argument load, real, double
argument load, integer, single

branching paramet.ers 10b

36 SISG
37 AISG
38 MlSG
30 DlSG
40 EISG
41 XISG
42 TISG

store
addition
multiplication
division
exp (1 t i 2)
exp (1 ** J)
memory transfer

logical operations with local operands

References to array elements

i 58 IADD array index addition

55 ARRl array 1 dimension
58 ARR2 array 2 dimensions
57 ARR3 array 3 dimensions

DO loop parameters

intrinsic functions (double precision)

Table 4.11: The regions in the graphs represent different aspects of the characterization of t h e

machines. Parameters ARR4 and ARRN are not included, because these are not measured
directly by the system characterizer.

30

~~ ~~

The System Characterizer
ORlGDNdh li2Gf-i ;:c
OF POOR QUALITY

31

Cray X - W / 4 8
looamo. I I I , I - 1 1 1 I I ! 1 I ‘2 I 3 4 I 5 I 6 I 7 1 8 1 9 1 10 I 1 l l 12

I ! I 1 I l l I 1
lmooa, -

I

I l l I

I l l I

0 10 P 30 4) m do 70 8)

psmrca number

Cyber 205 (4 pipes)

I

I I I I l l I l l
I I l l 1 I l l I 1

lmm0

10WO

loa,

100

10

1

n .

10 20 30 *) m 60 70 8)
V. 1

m e r number

IBM 3090/200

lnaa,

n looo0

a 1mO
n

0 100

10
e

C. 1

0.1
0 10 20 30 4) m do 70 8)

psmrca number

Figure 4.6: Characterization results (Cray, Cyber, and IBM 3090). The graphs show the value of
each parameter in nanoseconds. The twelve regions represent different aspects of the char-

acterization.

u8:GiNAL PAGE IS
The Sj-stem Characterizer OF POOR QUALITY

lCOCC0

lm00
n

a lax,

n
100

I 10

0

e

C.
1

0.1

Arndahl 5840
I I - i 1 - 1 -i I 1 - I j_

7 1 8 1 9 I 10 I 1 1 1 12
I

1 , 2 3 , 4 5 , 6
I

I I I 1 I l l I I
1 1 1 I 1

I l l I I

I l l I I

0 10 3) 30 40 60 do 70 80

paramaw number

Convex C-1

I l l I !

I l l ' I

I I I I l l I 1

I I I

I
0 10 20 30 40 m 60 70 80

panmeter number

VAX 8600
loam00

! I I I l l I I
loOam i l l / / I I I

I I I l l
I /
I I
I I

lmm0

n

a lax,
n

0 I00

S I !
e I I

C. I I

10 F

I

1 . I I l l I I
0.1 F

0 10 20 30 43 bo do 70 m

psnmeca number

F W e 4.7: Characterization results (Amdahl, Convex, and Vax 8600). The graphs show the
value of each parameter in nanoseconds. The twelve regions represent different aspects of

the characterization.

lmaxXa

1000000

loUm

n loo00
a

1mO n

O 1m

e 10

s

C.
1

0.1

looou)

n loo00

a
n

loo0

0 loo

10
I

e

C.
1

0.1

Vax-11/785
I - i - 1 1 1 i - 1 r

I I I

I l l I I
I l l I I

I l l I I
I l l I I

0 10 zl 30 60 60 70

I l l I I

I l l I I
I l l I I

0 10 a0 30 u) 50 60 70 80

panmeter number

Sun 3/50

n

a

n

0 I l l I I
I I l l I l l l l
e I l l I I

C. I l l I I

I I I I I l l I I

panmet- n u m b

33

Flgure 4.8: Characterization results (Vax 785, Vax 780, and Sun 3/50). The graphs show the
value of each parameter in nanoseconds. The twelve regions represent different aspects of

the characterization.

The System Characterizer 34

parsnmter number

Figure 4.0: Characterizstion results (IBM RT-PC/125). The graph show the value of each
parameter in nanoseconds. The twelve regions represent different aspects of the characteri-
zation.

3 5

10.0

1 .o

.10

.01

.oo 1

1 1 1 1 1 1 1

1 -

-
l l l l l l ~

1 I I I I I I I I I I I 1 1 . 1 I I I I I r
3 2 4

t 1 1 1 1 1 1 1 1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

parameter number

Figure 4.10: Characterization results for all machines normalized to the VAX-11/780 (I). Re
gions 1-6 represent different aspects of the characterization (see table 4.11).

The System Characterizer ORIGINAL PAGE Is
OF POOR QUALITY

10.0

1 .o

.10

.01

.001

6 7 8 9 10 1 1

6

38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

parameter number

Figure 4.11: Characterization results for all machines normalized to the VAX-11/780 (II). Re-
gions 6-12 represent different aspects of the characterization (see table 4.11).

5
The Program Analyzer

The system characterizer allows us to represent the performance of individual opera-
tions of different architectures using a single unified model. On the other hand, the pro-
gram analyzer decomposes applications in terms of the same group of parameters. The
program analyzer is a tool for measuring static and dynamic properties of programs.
These properties determine how the application will be executed by the system me are
evaluating. The parameters chosen for this decomposition are exactly the set of opera-
tions supported by the programming language. I t is for this reason that t o implement a
program analyzer we only need to modify the compiler t o obtain the static properties of
the application. Also we need to instrument the source code or the object code to produce
dynamic Statistics at run time. Using the static and dynamic statistics it is possible to
obtain the dynamic behavior of the application.

5.1. Execution Profilers
Most of the computer systems currently in use have utilities to produce execution

profiles using additional information generated by the compiler [POW83]. As an example,
in UNIX 4.3BSD, the C, Pascal, and FORTRAN compilers have two options to obtain
reports about the program’s execution profile. The first option (-p switch), instruments
the object code to record information about the number of times each function is executed
and the amount of CPU each function consumes. When the program finishes execution, it
produces a file called mon.out that contains the values of the counters and timers. A util-
ity program called ‘prof’ takes this information and using the table of symbols located at
the end of the object file, produces a detailed report about how many times each function
was executed and the amount of time it spent in each function. A more useful tool is
gprof [GRA82]. The profile information stored in the monitor file (gmon.out) also con-
tains the call graph of the execution and the report generated Ly gprof gives specific infor-
mation of who invoked each particular function and how many times.

The SUN workstation also provides information about the number of times each line
in the source code executes. The utility program ‘tcov’ prints the original source program
along with the number of times each lines was executed. As in the case of ‘prof’ and
‘gprof’ the compiler instruments the object code by including counters for each basic block
of the source code.

The information that our program analyzer produces is similar t o the one produce by
‘tcov’. However, in addition to the number of times each basic block executes, we need t o
count for each line, or more specifically for each statement, how many times each opera-
tion appears in the statement. As we saw in the last section, it is not possible to access at
the high level of a programming language the primitive operations like load or store. I t is
for this reason that we need to distinguish for each accessible operation at the high level
the type of the operands, their storage class, and the number of bits used in their
representation. Because this is also the kind of information that the compiler needs in
order t o produce correct object code, it is the compiler the best place to obtain this infor-
mation.

37

The Program Analyzer 38

Figure 5.1 shows how static and dynamic statistics are measured by the program
analyzer. As we can see, this process is very similar compared to how execution analyzers
work. In our system we are using the front end of a FORTR-AN compiler t o instrument
and collect static statistics for each block. and to instrument the source code to produce
the dynamic statistics as well. The statistics of an application produced by the program
analyzer depend only on the application itself and not on the computer systems in which
it runs. The significance of this is that if we have M applications that we are going to use
t o evaluate L'V computer systems, we only need one description for each program and one
for each system (N + M) . To make a performance evaluation using normal benchmarks, we
need to make 1V.M runs.

Code ,)

Execution Analyzer Program

I
I

I
-4. ,A

Figure 6.1: Static and dynamic analysis of programs.

5.2. S ta t i c and Dynamic Statistics

We can see how the program analyzer works using as an example a particular state-
ment in one of the kernels of the Livermore Loops [MCM86]. These collection of loops
represent the type of computational kernels found in the codes normally executed a t
Lawrence Livermore National Laboratory. These loops contains mathematical operations,
such as inner product and matrix multiplication, and more complicated algorithms like
the Monte Carlo Search Loop and 2-D Particle in a Cell Loop. John Feo (FE0871 has
investigated the computational and parallel complexity of the loops, in an attempt t o use
the loops to evaluate the performance of MIMD machines. In the next few lines we can

The Program Analyzer

param.

39

operat ion I type I precision I class I static I dynamic

see a single stat,ement taken from the eighth kernel of the Livermore Loops:

U1 (KX,KY,IiL2) = U1 (KX,KY,IiLl) + All * DU1 (KY) +

1 A12 * DU2 (KX) + A13 * DU3 (KY) +

2 SIC * (U1 (KX+l,KY,BLl) - 2. * u1 (KX,KY,HLl) +

3 u1 (KX-l,KY,HLl))

SRSL
ARSL
MRSL
ARR 1
.4RR3
I.4D D

store
addition

multiplication
array with 1 dim.
array with 3 dims.

index addition

real
real
real
na
na

integer

single
single
single

na
na

single

local
local
local
na
na

local

1
6
5
3
5
2 -

62280
373680
31 1400
186840
311400
124560

Table 6.1: Static and dynamic statistics of kernel (Livermore Loops).

The program analyzer decomposes this statement not only in the number and type of
operations involved, but also makes the distinction that the integer addition (2 operations)
executes in the context of an index array. Normally operations between indexes are han-
dled different from other arithmetic operations. The program analyzer keeps separate
counters to distinguish between conventional arithmetic operations in expressions and
arithmetic operations using indexes.

5.2.1. Description of the Test Programs

We ran the program analyzer for the ten programs in table 5.2. There are three
group of programs: small integer oriented tests like the Baskett puzzle, Shell, and Erathos-
tenes. There are some floating point computational intensive programs like Los Alamos
benchmark. The Livermore Loops, the NAS benchmark, Whetstone, the Mandelbrot set,
and the Linpack benchmark. The last group is represented by the Smith benchmark that
contains intensive integer, floating point and logical computations. The execution time for
the programs varies from .I of a second to approximately 600 seconds on a CRAY S-
MP/48.
0 Los Alamos: this is one of the benchmarks used by LANL Computing and Com-

munication Division [BRI86, BUC85, GRI84, SIM871 to evaluate the performance of
supercomputers. This code is known as BMK8A1 an consists of a series of simple
vector calculations (run in scalar mode in this study) to test the rates of vector
operations as a function of vector length. The vectors are stored in contiguous
memory locations. Typically one million floating-point operations are timed.

0 Conway-Baskett puzzle: This benchmark is a program developed by Forest
Baskett [BEE841 and normally used to evaluate the performance of microcomputers
and RISC-based machines [PAT82]. The program is a depth-first, recursive, back-
tracking tree search algorithm to find a solution to a particular puzzle invented by
John Conway. The puzzle consists in placing 18 tri-dimensional pieces to form a
cube of five units on each side.

The Program Analyzer

Name
.A lamos
Baskett

Erathostenes
Linpac k

Livermore
11andelbrot

SAS Kernels
Shell

Smith
\Vhetstone

Table *5.2: Characteristics of the test programs
Description of the program

Los Alamos benchmark for vector operations execution rates
A backtrack algorithm to solve the Conway-Baskett puzzle
The sieve of Erathostenes on 60000 numbers
The standard linear equations software of Argonne N3t. Labs.
The twenty four Livermore Loops
Compute the hlandelbrot set on a grid of 200 by 100 points
NASA Numerical Aerodynamic Simulation benchmark
Sorts and array of 10000 random number using the Shell sort
A collection of tests similar to our System Characterizer
The Whetstone benchmark

Table 6.2: Characteristics of the test, programs.

Erathostenes sieve: This program is a simple search for prime numbers using the
centuries-old sieve met hod. The computation of arithmetic expressions is minimal
and most of the time is spent in doing comparisons.
Linpack benchmark: This is one of the most popular benchmark used in perfor-
mance evaluation for floating point computations. The program consist of two rou-
tines: the first computes the decomposition of a matrix, and the second routine solves
a system of linear equations represented by the above matrix. The program was ori-
ginally designed t o give the users of the Linpack software package information about
the possible execution times for solving linear equations. Nowadays, there are over
two hundred machines reported in the list collected by J. Dongarra at the Argonne
National Laboratory IDON85, DON87a, DON87b, DON881. Because Linpack run-
ning in single precision fits completely in a 64K cache, the performance reported by
this benchmark may be higher than the actual performance obtained by solving
linear equations in real problems. In some machines a small memory-cache
bandwidth can slow down considerable the execution i f the matrix does not f i t
entirely in the cache [MIP87).

T h e Livermore Loops: This benchmark is a set of 24 kernels t ha t measure FOR-
TRAN numerical computation rates [MCM86]. The loops (originally fourteen) were
written by Fred McMahon in the early seventies and represent the kind of computa-
tions found in Livermore codes. The benchmarks gives the computational rates for
each of the loops and for different vector lengths. I t also computes a sensitivity
analysis of the harmonic mean for seven work distributions giving a total of forty
nine possible CPU workloads. The benchmark is a good test of the capabilities of
the compiler t o produce efficient (vectorizable) code. The range of performance for
vector machines can vary up to two order of magnitude in the different loops. The
twenty four loops are shown in table 5.3.
Mandelbrot set: This program computes for a window of 200 X 100 points on the
complex plane the mapping Z,CZ,~-~ + C, until the norm of 2, is greater than 2. or
the number of iterations is equal to one hundred. This program (variations of it) is
used to benchmark graphic engines. All the computations are scalar and with float-
ing point variables.

The Program Analyzer

Vumber
1
2
3
4
5
6

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

I

1

Table 5.3: Livermore Loops kernels
Kernel Description
hydro fragment
incomplete Cholesky - conjugate gradient
inner product
banded linear equations
tri-diagonal eliminstion
general linear recurrence equations
equation of state
A.D.I. integration
integrate predictors
difference predictors
sum of two vector elements
difference of two vector elements
particle in cell (2 dimensions)
particle in cell (1 dimension)
casual FORTRAN (development version)
Alonte Carlo search loop
conditional computation
2 dimensions explicit hydrodynamics fragment
general linear recurrence equations
discrete ordinates transport
matrix product
Planckian distribution
2 dimensions implicit hydrodynamics fragment
finds first minimum in an array

Table 6.3: Livermore Loops kernels.

0 NAS benchmark: The N.4S kernel benchmark was developed by D. Bailey and J.
Barton to assist in supercomputer performance evaluation [RAI85a]. The program
consists of seven kernels that represent calculations typical of NASA Ames supercom-
puting. The kernels perform the following calculations [BAI85b]: “outer product”
matrix multiplication (MXM), two dimensional complex Fast Fourier Transform
(CFFT2D), vector Cholesky decomposition (CHOLSKY), vector block tridiagonal
matrix solution (BTRIS), sets up an array for a vortex method solution and performs
Gaussian elimination (GMTRY), creates new vortices according to certain boundary
conditions (EMIT), and inverts three pentdiagonal matrices (VPENTA). The pro-
gram executes approximately 2 billion floating point operations and has extensive
calculations with multidimensional arrays with different loop memory strides. Test-
ing this benchmark can use four different levels of tuning depending on the number
of lines changed, deleted or inserted. This program is normally run only in super-
computers given that it may take several hours to run in a machine without vector
operations.

Shell sort: This is a small program tha t sorts ten thousand random numbers using
the Shell sort [KNU73]. The algorithm was proposed by Donald L. Shell in 1959 and
is also called sort by diminishing increments. The number of operations executed by
the program is O(N3I2) . The operations executed are comparisons and memory
transfers.

0

~

The Program Analyzer

PROGRAM STATISTICS
Lines processed -> from 1 t o 37 1371

mnem operation
[srs l l store (01)
[arsl] add (02)
[mrsll malt (03)
[drsll d i v i d e (04)
[trsl] trans (07)
[sisll store (15)
[s i s l l add (16)
[s i s l l trans (21)
[andll and-or (43)
[crs l l r-sin (44)
[c i s l] i - s i n (46)
[procl proc (51)
[argr] r-sin (52)
[gotol goto-s (61)
[loin] do - in i (63)
[~ O O V] do-lop (64)

occurrences f rac t ion
occur : 8 (0.1481)
occur: 8 (0.1481)
occur: 4 (0.0741)
occur: 2 (0.0370)
occur: 12 (0.2222)
occur : 1 (0.0185)
occur: 3 (0.0556)
occur: 3 (0.0556)
occur : 1 (0.0185)
occur : 1 (0.0185)
occur: 1 (0.0185)
occur: 2 (0.0370)
occur: 2 (0.0370)
occur: 2 (0.0370)
occur: 2 (0.0370)
occur : 2 (0.0370)

Figure 6.2: Static statistics for the Mandelbrot set. The fraction column gives the static distribution

of the occurrence of the parameters in the source code.

0 S m i t h benchmark: I t is a FORTRAN program which consists of 77 individual
timed loops, each of which measures some aspect of machine performance. I t con-
tains tests of branch code, numeric code, procedure calls, and data movement, and
has samples of other computations, such as matrix multiplies and bubble sorts
[SMI88]. This benchmark is designed to measure various aspects of system perfor-
mance; the user can then weight the various performance factors as he sees fit. More
than seventy machines have been measured, ranging from microcomputers to mul-
tiprocessors and supercomputers. The benchmark has been designed to prevent most
optimizations performed by compilers.

W h e t s t o n e benchmark: this is a synthetic benchmark based on the statistics of
949 programs written in ALGOL 60 a t the National Physical Laboratory and Oxford
University during the late sixties [CUR76]. The results using this benchmark are still
quoted by some manufactures but few accept the validity of this benchmark as a real
measure of floating point intensive calculations. The most important reason is t,hat
the distribution of statements in programs has changed as a results of improvements
in the programming methodologies, programming languages and most important
machine architectures. The benchmark produces a single figure of merit for scalar
processing. This number represents the performance for the execution of its ten
modules (tests), and combines the performance of floating point operations with the
performance of trigonometric and integer operations. I t is important t o note that
most of the time is spent on module 7 that makes extensive use of trigonometric
functions.

0

The Program Analyzer 43

5.3. Output from the Program Analyzer

In this subsection we present an actual example of how the program analyzer works.
In figure 5 . 2 we can see the output for the Mandelbrot program. \Ve can see that for each
parameter we report the number of static occurrences in the code and the static distribu-
tion of parameters. Although in this research the static distribution does not give us any
additional information, these statistics are sometimes by software engineers t o compute
software complexity metrics.

It. is possible to insert ‘compiler’ directives in the source code to instruct the program
analyzer to produce partial reports for some number of source lines. This gives the user
the opportunity of knowing the static and dynamic statistics of that portion of the code,
and also to produce, with the aid of the system characterizer and the execution predictor,
execution time estimates of subparts of the program.

5.4. Programs Statist ics

Tables 5.5 and 5.6 present the dynamic statistics of each program sorted by value.
and also their cumulat,ive distribution. The table shows the most costly parameters for
each program in terms of the number of times each parameter is executed. These not
necessary represent the most time consuming parameters, which depend on the charac-
teristics of the machines. Tha t type of information will be generated using the program
predictor and the parameters of each machine. We see in the distributions that there is a
small number of operations that account for almost all the execution time. In all the pro-
grams except the IVhetstone benchmark between five and seven operations represent
almost ninety percent of the total number of operations executed.

The number of times each operation executes depends on the input given to the pro-
gram. Executing the program for a different data input will almost always produce a dif-
ferent distribution in the dynamic statistics. The parameters t ha t correspond to the
access of 1 dimensional arrays (ARRI), the loop overhead time (LOOV), the arithmetic
operations -add and multiply- are the most executed operations for all the programs. But
the distribution of these parameters varies considerably from program to program. The
reason for this variation is that some programs (Mandelbrot, Shell, Erathostenes) have a
small number of lines, between 40 and 100. In fact, these program represent only a very
small fraction of the total execution time of our workload. Five of the benchmarks exe-
cute in less than 2 seconds on the CRAY X-MP, while the other five programs take
between 10 and 000 seconds. Because these programs use a small number of different
operations normal errors in our measurements are not balanced out by other errors on
other operations. An example of this is the hlandelbrot program tha t executes mainly
scalar floating point arithmetic without using array elements. In the case of the Los
Alamos benchmark the code is a repetition of small loops of the form:

CALL JOBTIM (T1)
DO 20 J = 1,LOOPS

DO 20 I = 1,LEN
R (1) = Vl(1)

20 CONTINUE
CALL JOBTIM (T2)

* s1

The Program Analyzer 44

assignment

these kind of constructs are not representative of real applications. If we compare the
statistics for the Livermore Loops wi th a program length of 1900 lines, against the results
reported by Knuth [K N W l , VVECI841 we find a fairly good agreement between the two dis-
tributions: see table 5.4.

sta d y n sta d y n
.5l 67' 55.5 66.3

Distribution of Statements
Statement 11 Icnuth I Livermore

call user
call standard
return
if
do loop
got0
other

3 3
1 1
-1 3

10 1 1
9 3
9 9

-

-
3 I

7.4 4.9
9.2 1.6
2.3 4.9
6.5 14.1

11.1 3.2
5.7 2.9
2.3 2.0

Table 6.4: Static and dynamic statistics at the statement level (all quantities in percentages).

~ ~~ ~

The Program Analyzer

pararn

. N S L
ARRl
SRSL
SIRSL
LOOV
ARR2
ARSG
MRSG
IADD
SRSG
TRSG
ARR3
AISL

AGRS
PROC
SISL
TISL
AGIS
CRSL
AISG

ORIGINAL PAGE IS
OF POOR QUALITY

Livermore
dYn frac

42082283 ,2447
25874691 .1446
23755236 .I381
15721656 ,0914
13014396 .0757
10725888 .0624
8765400 .0510
6963630 .0405
6576587 ,0383
6576586 .0382
1888908 .0110
1307880 ,0076
1121655 .0065
979662 .0057
975927 ,0057
878034 .0051
867738 .0050
791125 .0046
710287 .0041
451542 .0026

-15

pararn

ARRl
LOOV
SRSG
MRSG
ARSG
IADD
ARSL
LOIN
AGRS
AGIS
PROC
AISL
EISL
TRSL
DRSL
XRSG
TRSG
SISG
CISL

ANDL

AlrunO.

dy n
322006015

934931 12
9 1003000
84000000
49000000
35000000
2 1000197

2314108
712296
180000
179592

4000
2000
1445
1105
1000
1000
1000
686
392

frac

.4607
,1338
,1302
,1202
.0701
.0501
.0300
.0033
,0010
.0003
.0003
.oooo
.oooo
.oooo
.oooo
.oooo
.oooo
.oooo
.oooo
.oooo

cum

,4607
,5945
,7247
,8449
,9150
.96.51
,9951
,9984
,9994
,9997
1 .ooo
1 .ooo
1 .ooo
1 .ooo
1 .ooo
1 .ooo
1 .ooo
1.000
1 .ooo
1 .ooo

I NAS kernela
param

ARR2
IADD
ARSL
ARR3
MRSL
LOOV
SRSL

MRSG
ARR 1
ARR4
ARSG
SRSG
TRSL
AISL
ERSL
AGRS
PROC
DRSL
LOGS
TRSG

685238000
566581256
551229 173

~ 452430305
402504958
363214880
3 I4803900
258770855
246288901
183914506
173863550
8306759 1
62408350
18740872
14561611
13931792
12000684
5495002
3413494

frac

.2273

.1198

.099 1

.0964
,079 1
.0704
.0635
.0550
.0452
,043 1
.0322
.0304
.O 145
.0109
.0033
.0025
.0024
.0021
.0010
.0006

cum

,2273
.3471
,4462
.5426
.I3217
,6921
,7556
,8106
,8558
,8989
.93 1 1
.9615
.9760
,9869
.9902
.9927
.9951
,9972
,9982
,9988

cu rn

,2447
.3893
,5274
3188
,6945
,7569
,8079
,8484
.8867
.9249
.9359
,9435
,9500
.9557
.9614
.9665
.9715
.9761
,9802
.9828

I Baskett

pararn

CISG
IADD
LOOV
ARR2
ARR 1
ANDL
GOTO
TISL
AGIS
CISL
TISG
AISL
SISL

LOIN
PROC
SISG
AISG
MISL
TRSL
SRSL

dYn
1365170
1133 15.4
790495
766720
685213
540905

57795
43390
38663
31913
30855
30152
29909
2 1468
19336
6009
5996

445
4
1

frac

,2439
2024
,1412
,1370
,1224
.096G
,0103
.0078
.0069
.0057
.0055
.0054
.0053
.0038
,0035
.0011
.oo 1 1
.ooo 1
.oooo
.oooo

-
cur

24:'
,441
.587
.72
.841
.9 4:
.95:
,961
.96t

- -

.98i

.99(

.99

.99: ,

.99!
1 .O(
1.01
1 .O(-

pararn

ARR 1
LOOV
SRSL
ARSL
hlRSL
ARRZ
AGRS
AGIS
PROC
TRSL
CISL
TISL
L4DD
DRSL
MISL

GOTO
CRSL
AISL
LOIN
ANDL

LLnpack

dYn
27356020

9735148
9469508
9344931
8930874
1604752
1089573
952191
819045
674414
548318
288574
283722
275205
270000
267488
265149
15457 1
147117
133822

frac

.3767

.1341

.1304

.1287

.I230

.0221

.0150

.0131

.0113

.0093

.0076

.0040

.0039

.0038

.0037

.0037

.0037

.0021
,0020
.0018

cum

.3767

.5108
5412
,7699
,8929
.9 150
,9300
.9431
.9544
.9637
.9713
.9753
.9792
.9830
.9867
3904
.994l
,9962
,9982
.9999

I I Erathomtenem
I

param

ARRl
CISL

LOOX
LOOV
TISL

GOTO
SISL
AISL
Lorn
TRSL
PROC
LOIN
AGRS
SRSL
ARSL
-
-
-
-
-

dYn
324880
216994
150938
ll9999
113943
56754

6057
6057
3245

2
2
2
2
1
1
-
-
-
-
-

frat

.3252
2172
.1511
.1201
.I141
.0568
.006 1

.006 1

.0032

.oooo

.oooo

.oooo

.oooo

.oooo

.oooo
-
-
-
-
-

- I cu I - -
.32.
.54:
.69
.81.
.92
.98

.99f
,991 I

1.01
1.01
1 .O'
1.01

,991 ,

I 1.01 1
-
-
-
-
- -

Table 5.51 Dynamic statistics of test programs (I). In the third and fourth columns we report the
fraction of the total execution time that each parameter represents and the cumulative dis-
tribution .

- ~~~

The Program Analyzer

dy n

2348726
2328726
2308524

597131
597131
597131
597131
577133
577131

80207
20200
20002

20 1
2
?

I 2

I

psram

ARSL
SRSL
MRSL
GOTO
CRSL
CISL

. 4 \ i L
N S L
SISL

TRSL
LOOV
TISL
LOIN
PROC
DRSL
AGRS

param

ARRl
TISL
SISL
AISL
CISL

GOTO
LOOV
LOIN
DISL
TRSL
PROC
AGRS
MISL
-
-
-

Mandelbr ot

dyn
2021588
739869
721809
721794
721682
263303
230018

16
14
2
2
2
1
-
-
-

~ ~~

param

ARRl
ARSL
SRSL
AGRS
MRSG
LOOV
TRSG
AISG

GOTO
MISG
TISG
CISG
DRSG
PROC
SISG
SRSG
MISL
IADD
SINS
DRSL

frac

,2206
,2187
.2 168
,0561
.Os6 1
,056 1
.OS61
.0542
,0542
.0075
.oo 19
.oo 19
.oooo
.oooo
.oooo
.oooo

~~

dyn
301825
210650
161900
135592
113700
111650
92409
84000
55250
.52500
51i58
51750
49150
45662
31500
23400
21009
21000
12800
7850

cum

.2206
,4393
.6561
.i 122
.7683
,8244
.8805
,9347
.9889
,9964
.9983
1.000
1 .ooo
1 .ooo
1.000
1.000

Smith
Jaram 11 dyn

ARRl
TIS1
M S L
SISL

LOOV
3 0 T O
X O M
TRSL
CISL
IADD
ANDL
MISL
AGIS
LOIN
ARSL
SRSL
SRDG
ARR2
PROC
DRSL

166383224
58968760
52178266
49496467
43184695
22826813
19325095
12053242
8077412
6707232
5756582
5585525
42003 12
334672 1
3025742
2815742
2457705
1420727
900312
472761

frac

.3535

.1253

.1109

.lo52

.0918

.0485

.04 1 1

.0256

.O 172

.0143
,0122
.0119
.0089
.007 1
.0064
.0060
,0052
.0030
.0019
.0010

cum

.3535

.4788

.5897

.6949

.7867

.8352

.8763
,9019
.9191
.9334
.9456
.9575
,9664
.9735
.9799
.9859
.99 11
.9941
.9960
.9970

Shell
f rnc

.3i30
,1365
.1332
.1332
,1332
,0486
,0424
.oooo
.oooo
.oooo
.oooo
.oooo
.oooo
-
-
-

cum

.3730
,509.5
,6427
.7759
.g090

.9576
1 .ooo
1 .ooo
1.000
1 .ooo

- -

I .ooa
I .ooa
1 .ooa
-
-
-

Whetatone
frac

.1801

.1257
,0966
.0809
.0678
‘0666
,0551
.050 1
,0330
,0313
.0309
.0309
,0293
.0272
.0188
.O 140
.O 125
.0125
.0076
.0047

-
cum

.1801

.3058

.4024

.4833

.5511
,6177
A728
.7229
,7559
.1872
.8181
.8490
.8783
.9055
.9243
.9383
.9508
.9633
.9709
.9756

- -

-
Table 6.1): Dynamic statistics of test programs (II). In the third and fourth columns we report

the fraction of the total execution time that each parameter represents and the cumulative
distribution .

ORIGINAL PA= fS
OF POOR QUALITY

6
The Execution Predictor

As we explained in the last two sections, the system characterizer and the program
analyzer are the only tools that w e need to produce estimates of the execution time of pro-
grams running in different architectures. characterizer and the program analyzer to obtain
an estimate of the expected execution time of the application. I t is clear that these esti-
mates have meaning only for the data used in the dynamic analysis of the programs. In
this section we will obtain prediction for our benchmarks and compare these results to the
actual running times.

6.1. Computing Execution Es t imates and Experimental Errors
In section 3.3 we proposed a model of execution in which the total time is a linear

combination of the number of times each operation executes in the program and the times
it takes to execute these operations. We gave expressions to compute for each kind of test
the variance involved in the measurements. The variance in the total execution time for
an application is

n
a2T = C?.u2Pi

i=l

where Ci is the number of operations of type i executed in the program. If the experi-
mental errors are small compared to our measurements, the total variance in our predic-
tions will tend to be small. Programs that execute many arithmetic operations tend to
produce predictions with small intervals of uncertainty. This also applies for systems
where the clock resolution is fine.

Figure 6.1 presents a sample output from the execution predictor. Each line contains
the number of times the operation was executed, and the fraction of the total that that
number represents. The output also includes the expected execution time, the fraction of
the total time and the standard deviation.

L

6.2. Execution Predict ion and Sys tem Characterizers

As mentioned in the introduction, one of the problems with benchmarks is relating
their results to the actual characteristics of the machine and the application programs.
Knowing that a computer system runs the Dhrystone benchmark at a certain rate does
not give us sufficient information about what will be the expected execution time of other
programs. Obviously if machine A has a Whetstone rate that is several times greater
than the rate for machine B, we can expect that scientific applications will run faster on
machine .4, but this does not give us precise information about how fast the programs will
actually run. Also the machines we need to evaluate are normally comparable in their
overall performance, and knowing that one has better results for a couple of benchmarks
does not imply that it is going to run our applications faster; especially when these appli-
cations execute only a small set of operations that run faster in the machine that did not
get the best results using a particular set of benchmarks. The situation gets complicated
when the performance evaluation index produced using some group of benchmarks differs

47

The Execution Predictor

PROGRAM STATISTICS FOR THE VAX-11/785
Lines processed -> from 1 to 37 1373

mnem operation
[srsl] store (01)
[arsl] add (02)
[mrsll mult (03)
[drsl] divide (04)
[trsll trans (07)
[sisl] store (15)
[aisll add (16)
[tis11 trans (21)
[andll and-or (43)
[crsl] r-sin (44)
[cisll i-sin (46)
[proc] proc (51)
[agrsl r-sin (52)
[goto] goto-s (61)
[loin] do-ini (63)
[loov] do-lop (64)

times-executed fraction
exec : 2328726 (0.2187)
exec : 2348726 (0.2206)
exec : 2308524 (0.2168)

exec : 80207 (0.0075)
exec : 577131 (0.0542)
exec : 577133 (0.0542)

exec : 597131 (0.0561)
exec : 597131 (0.0561)
exec : 597131. (0.0561)
exec : 2 (0.0000)
exec : 2 (0.0000)
exec : 597131 (0.0561)
exec : 201 (0.0000)
exec : 20200 (0.0019)

exec : 2 (0.0000)

exec : 20002 (0.0019)

execution-time fraction std.dev.
time: 0.900751 (0.0703) 0.452488
time: 3.453567 (0.2695) 0.128027
time: 4.666220 (0.3641) 0.438389
time : 0.00000~ (0.0000) 0.000000
time: 0.212172 (0.0166) 0.022616
time : 0. OOOOOO (0 . 0000) O . 000000
time: 0.682171 (0.0532) 0.027356
time: 0.057306 (0.0045) 0.004174
time: 0.536582 (0.0419) 0.027528
time: 1.276666 (0.0996) 0.141042
time : 0.997388 (0.0778) 0.066700
time: 0.000042 (0.0000) 0.000003
time : 0.000001 (0.0000) 0.000001
time : 0.000000 (0.0000) 0.000000
time: 0.003643 (0.0003) 0.000492
time: 0.027965 (0.0022) 0.006056

Estimate execution time = 12.814481 sec. Standard Deviation = 0.663125

Figure 6.1: Execution time estimate lor the Mandelbrot program run on a Vau-11/785.

from the actual evaluation obtained by running the real codes. In these cases it is
extremely difficult t o find the causes or to modify the benchmarks to better represent the
characteristics of our workload. The major flaw in the benchmark approach is that we
lack a model for the system that we are trying to characterize and this makes very diffi-
cult to correlate our benchmark results with application programs.

6.3. Model Validation
One of the most important tests for a computer model is the experimental validation

of the accuracy and sensitivity of the model. This validation is important for several rea-
sons: if the execution estimates agree with the experimental validation, we can have confi-
dence that the model really characterizes the system. This provides evidence that the set
of parameters used in the program analyzer are adequate to decompose applications. It
also increases our confidence that the estimates produced by the execution predictor are
acceptable (within a confidence interval) with the real execution time of actual codes. On
the other hand, if for some applications the execution estimates do not agree with the
experimental validation, w e can conclude that they are some characteristics in the com-
puter system that our model is missing or fails to capture. In this situation it is possible
to isolate in the application program the operation or set of operations that cause the
problem and to include them in a new more general model. This is possible because the
system characterizer, the program analyzer, and the execution predictor use a machine
model that is common to all machines that execute programs written in FORTRAN. \Ire

The Execution Predictor 49

may build a new model by incorporating some additional parameters to our linear equa-
tion. T o improve the model ive need to write new tests to detect and measure these
parameters in the system characterizer, modify the program analyzer to count the
occurrence of these operations in the source codes, and produce new estimates using the
results obtained with the system characterizer and the program analyzer. Isolating the
portions of the codes that cause the erroneous prediction makes it possible to redefine
some parameters to detect machine features not previously detected with the model. Con-
tinuing this process will lead to a more complete model of computer systems and to more
accurate predictions of execution times. Here the term 'complete' refers to our ability to
predict, using the characterization of a computer system to obtain the expected execution
time of some set of applications. This way of approaching system characterization and
performance evaluation agrees with the premises we mentioned earlier about experimenta-
tion and incremental model refinement.

We can illustrate the point made in the last paragraph with the following example.
In the first version of our model arithmetic operations were classified according to the
characteristics of the operands. independent of where the operation appeared in the text.
The first predictions that we made for the Livermore Loops running on a the VAX-11/785
were not very far from the actual running times for some loops, but for a couple of them
the actual running times were almost three times smaller than the execution estimates.
When we examined the source code w e found that loops 1, 4, 7, 8, and 18 have the charac-
teristic of adding or subtracting a constant t o most of their array indexes. In our model
an integer arithmetic operation inside of one of the dimensions of the array was con-
sidered identical t o the same operation executed between two variables of the same type,
size and class storage. In almost all the existing compilers, arithmetic operations between
indexes inside a loop use registers instead of making reference to memory locations, and in
other cases, the constant is added to the base-descriptor of the array a t compile time elim-
inating the unnecessary operation.

We
improved our model to make a distinction between an integer arithmetic operation exe-
cuted in the context of making a reference to an array element, and a normal operation
between integer variables in expressions. In addition we wrote a small set of tests to
measure the execution time of these new operations in the system characterizer. The new
predictions obtained using this new approximation were as good as the best obtained pre-
viously.

These are not an optimization but a standard features in most compilers.

8.4. Execut ion Predictions and Actual Running T i m e s

We obtained execution estimates for the programs in table 5.2 and for each of the
machines in table 4.1. Aside from this, we also executed each of the programs in the same
systems, and measured the actual execution times. We tried to reproduce the same condi-
tions in these tests as when we ran the system characterizers. Only in this way we can
guarantee that the execution estimates obtained using the results of the system character-
izer correspond to the same systems in which the programs were run. In tables 6.1-6.2
and in figures 6.2-6.4 we present the measurements along with the estimates. All the
results are plotted together in figure 6.5. We also show the difference between the real
measurements and the predictions.

~- ~~

The Execution Predictor

b s k e t t

ORIGINAL PAGE ES

Erathostei

OF POOR QUALW

Table 6.1: Execution estimates and actual running times (I)

System

CRAY S-MP/48
CYBER ?05
IBM 3090/?00
Amdahl 5840
Convex C-1
VAX 8600
VAX- 11/i85
VkY-11/780
Sun 3/50
IBM RT-PC/1?5

II
real
(seci

63.8
01.1
80.5

345.8
236.1
265.3
701.i

1581.7
6273.2
3881.0

Dred

II average
root mean sa.

error 11 real I Dred

83.0
73.4

3n.2
243.6
?66.7
758.3

1X?.7
3iQ5.8
3810.0

ivermore
pred error
(sec) (76)

16.0 +10.46
31.7 -1.25
18.5 -5.13

- -
60.0 +2.06
88.7 +0.57

?55.0 +14.60
653.5 +6.06

2583.7 +5.16
1573.8 -2.25

+3.56
6.00

-5.41 ?.?3
+3.18 9.75
+0.53 ?.8?
+KO7 7.38
+7.65 14.85

-1.85 6.20

-?.02
6.55

n
real
(sec)
1.002
0.676
0.220
3.344
3.048
3.400
11.36
33.42

163.04
105.43

pred
(set)
1.057
0.588
0.2?6
3.546
3.380
3.614
12.82
32.13

165.81
104.00

(s 4
0.66
1.16
0.78
2.67
?.32
3.24
8.27

16.17
8.315
7.40

error
(55)
+5.48

-13.02
+2.73
+&04

-14.30
+3.55

4-12.85
-3.86
+1.14
-1.27
-0.07

8.04

11 (sec) 1 isec)
-5.71 0.140 0.161

-10.85
+18.18
+18.73
-15.64
+14.80
+12.06

+8.88
+17.78
f10.35

+&OS
15.80

error

-11.88
-10.77
-18.64
-0.40

-10.80

+33.00
-3.80
12.45

Table 6.11 Execution estimates and actual running times (I). All real times and predictions in

seconds; errors in percentage.

The result for the Livermore Loops on the Amdahl 5840 is missing because the com-
piler complained of an error in the program when the tests were run1. The N.4S kernels
and the linpack program were not available when the test program were run on the
Amdahl 5840 and the IBXl 3090/200. On the Convex C-1, VAX 8600, VAX-11/785, and
VAx-11/780 the NAS kernels does not run in single precision2.

1 The code generator detected an error in the code produced by the first pass module.
2 The program divides by zero on these machines if the benchmark is executed using 32-bit f l oa t

ing point numbers. The random number generator needs 6 4 b i t numbers to execute correctly
PAI871. However on the SUN 3/50 and IBM RT-PC/125 the program executed without errors with
single precision.

The Execution Predictor

Whetstone
real pred error
(sec) (sec) (%)
0.302 0.206 -1.00

Table 6.2: Execution estimates and actual running t imes (n)

average
error
(57)
+1.01

System

CRAY X-MP/48
CYBER 205
IBM 3000/200
Amdahl 5840
Convex C-1
VAX 8600
VkX- 111785
VAX-11/780
Sun 3/50
IBM RT-PC/lZ5

CI'BER 305
IBM 3000/?00
Amdahl 5840
Convex C-1
VAX 8600
VAX- 111785
VAX- 111780
Sun 3/50
IBM RT-PC/125

average
root mean sq.

real
(set)
533.8

1456.7
-
-
-
-
-
-

80800.
50863.

138.0
53.2

108.0
103.1
238.7
683.0

1087.5
014.8
545.1

/I average
root mean sq.

t I I

System

S kernels Shell

14.02

I II Smith

pred
(4
65.77
02.9
45.3

185.4
107.2
230.0
601.6

1018.8
877.4
675.3

0.555
0.440
1.803
1.828
2.233
5.800
0.183
3.140
4.68

error
(96)
-1.30

-32.68
-14.85
-6.36
+2.12
-3.64
+1.13
-6.32
-4.00

+23.80
-4.22
14.06

0.481
0.305
1.065
1.770
2.140
6.110
8.803
3.522
4.61 -

-13.33
-10.23
+3.80
-3.17
-4.16
+5.34
-4.14

+12.17
-1.50
I

-2.84
8.33

1.128
0.350
1.607
1.111
2.870
7.05

21.57
34.24
12.05

0.034
0.335
1.042
1.170
2.631
7.385
21.74
30.5

11.05

-17.27
-4.20

+14.44
+5.31
-8.33
-7.11
+0.70

+15.36
-0.82

-0.04
-4.34
+2.01
-4.61
-3.45
+5.80
+0.26
+2.61
+3.63

-0.30
4.45

51

-
rm

error
(96) -
8.15

10.85
0.47
0.43
0.08
0.88
0.17
0.52

13.01
11.82

Table 6.2: Execution estimates and actual running times (11). All real t imes and predictions in

seconds: errors in percentsge.

The Execution Predictor

1OOO'

e
R

a
I

T '0°'
1

52

k i n d NAS kernels 7
/

/

/

/

*l-s - *-Smith
1

/

1000
R
e
a
I

T loo
1

m
e

10

1

0.1

100
R
e
a
1

T
m i a
e

1

0.1

CRAY X-MP/48 Cyber "05 (4 pipes)

T-loWRh

NAS kernels -,+'
/

/

/
Aamos -++Smith

/
/

Livermore -7
Linpack -4

/

/

/

Shell++'- Baskett

9- Whetstone

+/e--- Mandelbrot

/

4- Eras

Livermore -4
/

Linpack -p
/

/

/

/
Baskett- + 4- Whetstone

d- Mandelbrot
Th Shell

/

d- Eras
0.1

0.1 1 10 100 lo00 0.1 1 10 100 lo00

Predicted Time

IBM 3000/200

k i n d Alamos -y

Smith - +/
/

/

Livermore -#

/

/

/

/

/
/

/

' /

/+ c-- Baskett
Shell

/

*- Whetstone
d t- Mandelbrot

/
p- Eras

lo00
R
e
a
I

T loo
I

m
e

10

1

0.1

Predicted Time

Amdahl5840

k i n d /

t / Alamos -
Smith - j

/
/

/

/

/

/

/

i
,+ c- Mandelbrot - Baskett

Whetstone Shell -$:
/

/

d- Eras
/

/

/

0.1 1 10 100 0.1 1 10 100 lo00

Predicted Time Predicted Time

Figure 6.2: Predicted times versus real execution times (I). Results for the CRAY X-MP/48, the
W E R 205 (4 pipes), the IBM 3090/200, and the Amdahl 5840. Scales a re logarithmic and
values are reported in seconds.

The Execution Predictor

7

n m m - /
/

' J Alams -
Smith -7

/
Livemre - Y

Liipack A +
/

/

/

/

/
Mandelbmt -+/

+/- Baskdt
y C-- Shell

,+ - Whetstone

J- Baa
/

/

/

.=

53

1000
R
e

T loo
i
m
e

10

1

0.1
(

Convex C 1 VAX 8600

1Oooo

R
e
a
1

T
1
m
e

loo0

100

10

1

0.1
0.1 1 10 100 lo00 10000

Frediied Time

....

R
e
a
1

= 100
i

m
e

10

1

0.1 1 10 100 lo00

predied Tm

VU-11/780
10000

R
e
a
1

T
I
m
e

1000

100

10

1

0.1

/

/ Mandelbrot -+

Ebskett -p
d - \Vhetstone

b Shell

/

/

/

0.1 1 10 100 lo00 loo00

Redicted Time

Figure 6.3: Predict.ed times versus real execution times (II). Results for the Convex C-1, the
VAX 8600, the VAX-11/785, and the VAXl1/780. Scales are logarithmic and values are
reported in seconds.

The Execution Predictor 54

100000
R
e
a ' 1 0 m

T
i
m
e 1000

1M:

1C

1

SUN 3/50

h,"d IUS kernels -;'
/

/

Alanws -+'

L i e m r e -+

Lmpack -,+
Smith -+,

hhndelbrot A+'
/

/
p- Whetstone

/

/
+e- Bkskett
,,+a SheU

1 10 100 1000 loo00 1ooooo
predicted Tim

100000
R
e
a

10000

T
i
m
e 1000

100

io

1

1BM RT-FC/I?S

1 10 100 1000 l o r n 1c

plpdicted Tim,

100

Figure 8.4: Predicted times versus real execution times (111). Results for the SLW 3/50, and the
IBM RT-PC/125. Scales are logarithmic and values are reported in seconds.

The Execution Predictor

0.1

0.1

0.1

R 0.1

1 0.1

T 0.1

e
a

I

m
e 0.1

0.1

0.1

0.1

*
0

Idz

a
V

X

0

+
0

0

0.1 1

fJ'
:' N

10 100 1000 10000 100000
Predicted Time (sec)

Figure 6.6: Predicted times versus real execution times (IV). Each diagonal line represents one
graph from figures 6.2-6.4.

7
Analysis of Results and Summary

In this section we make an analysis of the data obtained with the system character-
izer. the program analyzer and the execution predictor and show how these results can be
combined to identify the strong and weak features of the systems with respect to the
workload used. In section 7.2 we discuss some of the factors that must be addressed in
order to improve the accuracy of our execution estimates. LVe finish this report by giving
a summary in section 7.3.

7.1. Analysis of Results
,A comparison of the execution times between our predictions and real measurements

show 5everal interesting patterns (figures 6.2-6.4 and tables 6.1-6.2). First we can see that
the relative performance of the systems is not the same in all programs. For example if
we consider the behavior of the three fastest machines used in these study we find the fol-
lowing. The CYBER was the fastest to run the hlandelbrot program; The CRAY X-MP
has the shortest t,imes for Los Alamos, The Livermore Loops, the Linpack, the NAS ker-
nels and the Lbletstone benchmarks1; while the IBM was the fastest on the Smith bench-
mark. Shell sort, and the Baskett puzzle. If we look a t the codes of these programs we
find that in the Mandelbrot. program almost 80 percent of the dynamic statistics
correspond to scalar arithmetic and logic operations. On the other hand the programs
that the CRAY runs faster have intensive floating point arithmetic operations with
arrays. LVhile for the Baskett puzzle, the Shell sort and the Smith benchmark the
predominant char,acteristic is the execution of integer operations with arrays. Except in
the case of the Erathostenes sieve, our execution eqtimates correspond closely to the
results obtained in the real executions. W t h the Erathostenes program the predicted
times and the real times are almost identical for the three machines (the value between
the minimum and the maximum execution time is six percent). This difference is less than
the experimental error due to clock resolution for the IBM 3090/200.

Relative differences in performance is clearer in the case of the VAX 785, the V.4X
780, the IBM RT-PC and the Sun 3/50. For the Livermore Loops, the Mandelbrot pro-
gram. the Linpack benchmark, and Los Alamos, the real measurements and the predic-
tions indicate a relative performance that varies from 8:5:2:1 to 14:9:3:12. On the other
hand, the result of the Shell sort and the Erathostenes sieve indicat,e that the Sun 3/50
and the IBM RT-PC are faster than both the VAX 785, and the VAX 780; this agrees
with the real measurements and our estimates. In this case, their relative performance is
around .5:.3:.75:1.

In table 7.1 we present the real and estimated relative performance between the SUN
3/50 and the IBM RT-PC/125. We see that the estimates agree with the real times in
predicting which machine will execute faster each of the programs. Except for the Smith

1 The Linpack and the NAS kernels were not run on the IBM 3090/200
2 The order is VAX $85, VAX 780, IBM RT-PC, and Sun 3/50.

56

Analysis of Results and Summary

Svstem II c 5 %

57

< l o %

Table 7.1: Relative performance

< 1 5 %

7 (70.0)
7 (87.5)
6 (85.7)
8 (88.8)
8 (88.8)

10 (100.)

9 (100.)
9 (100.)
8 (80.0)
6 (60.0)

program
Los Alamos
Baskett
Erathostenes
Linpack
Livermore
Mandelhrot
NAS kernels
Shell
Smith
Whetstone

< '20%

9 (90.0)
8 (100.)
7 (100.)
9 (100.)
9 (100.)

10 (100.)

9 (100.)
9 (100.)

10 (100.)
8 (80.0)

11 SUN 3/50 : IBhl RT-PC/125

1.139
0.818
1.611
1.526
1.555
1.765
0.67 1
1.678
2.841

average 11 L S ; ~
geometric

root mean sq. -

prediction
1.679
1.124
0 . 6 7
1.679
1.642
1.593
1.743
0.764
1.299
3.305
1.551
1.411

error (%)
+3.90
-1.32
-7.24
+4.20
+7.60
+2.44

+12.17
-22.59
+16.33

-0.25

+0.42

10.37
-

Table 7.11 Relative performance between the SUN 3/50 and the Il3M RT-PC/lZS. A value
greater than one indicates that the IBM RT-PC executes faster than the SUN. The first two
columns are dimensionless and quantities on the third column are in percentages.

benchmark, the absolute differences between the real and predicted relative performance
were less than 20 percent. For this program the predicted time on the IBM RT-PC was
almost 24 percent greater than the real time.

The results also indicate that our model works better for programs with long execu-
tion times and arithmetic operations. In table 7.2 we see how the predictions agree with
the real execution times for each machine and for different intervals of error. We observe
that approximately 00 percent of all predictions are within a distance of 10 percent from
the real execut ion times.

- "

CRAY X-MP/48 11 3 (30.0)
CYBER 205
IBM 3090/200
Amdahl 5840
Convex C-1
VAX 8600
VAX-111785

Sun 3/50
VAX-11/780

IBM RT-PC:/125

1 iio.oj

4 (44.4)
5 (55.5)
2 (22.2)
4 (44.4)

s (SO.0)

2 (25.0)
1 (14.3)

4 (40.0)

Total n 31 134.11

7 (70.0)
4 (40.0j

5 (55.5)

4 (50.0)
4 (57.1)

6 (66.6)
6 (66.6)
8 (88.8)
6 (60.0)
6 (60.0)

56 (61.5)

Table 7.21 Accuracy of the model for different intervals.

78 (85.7) [88 (96.7)

The numbers inside the parenthesis
show the proportion of the programs that are inside the error interval.

~~

Analysis of Results and Summary

parameter
array reference (1 dim)
loop overhead (step 1)
store-real-single-global
rnultiply-real-single-global
add-real-single-global

add-real-single-local
loop initialization
argumen t-real-single
argument-integer-single

addition in index array

58

dyn CRAY 1-LIP
.4607 .2658
.1338 .3390
,1302 .1142
.1202 .1764
.0701 ,0533
.os01 .oooo
.0300 ,0231
,0033 .0242
.0010 .0018
.0003 .0005

Table 7.3: Predicted Distribution of Execution Time by Operation (Loa Alamoa)

VXX 780
.%lo
,1594
.0263
.3650
.lo42
.oooo
.0443
.0155
.0013
.0003

SUN 3/50
.1113
.0146
.0032
.5529
.2155
.0054
.0918
.0024
.0018
.0002

Darameter
array reference (1 dim)
loop overhead (step 1)
store-real-single-global
rnultiply-real-single-global
add-real-single-global
addition in index array
add-real-single-local
loop initialization
argument-real-single
argurnent-integer-single

d y n
.4607
.1338
.1302
.1202
.0701
.0501
.0300
.0033
.0010
.0003

VAX 8600
.4187
.1796
.0279
.2045
,0946
.oooo
,0309
.0377
.0013
.0004

7
.3915

.1138
.loo9
.2731
.1198
.0015
,0107
.0134
.0026
.0010

,2842
,0732
.1531
.0519
,0039
.0232
,0132
.0015
.0005

VAX 785
,3578
.1693
.0578
.2201
.0926
.oooo
.0404
.0549
.0006
.0004

Amdahl
.4871
2015
.0848
.1303
.0508
.oooo
,0309
.0090
.0003
.0002

.2771

.oooo

.0330

.oooo

Table 7.3: Distribution of time for the ten most common operations in Los Alams benchmark. The
numbers in bold have a magnitude that is 50% higher than the geometric mean taking the distribu-

tions of the ten machines as sample.

IBM RT
.0622
.0517
.0652
.4907
,2282
.0041
A924
.0045
.0002
.oooo

Table 7.3 shows the distribution of the execution times per operations using the esti-
mates for the Los Alamos benchmark. As w e expect on different systems the distribution
of the operations is different, and some operations affect the total execution time more
strongly than others. Although the add and multiply operations represent only 20 percent
of the total, for the IBhl and the Amdahl they amount to 18 percent of the execution
time, but in the case of the Sun 3/50 and the IBM RT-PC/125, this quantity is more than
70 percent. For the Amdahl 5840 its distribution is quite similar to the dynamic distribu-
tion. We cannot conclude from this table tha t the Amdahl is a more balanced system,
because the execution time of the parameters must be proportional t o the complexity of
each operation in addition to how many times the operation is executed. We can see this
more clearly if we compare the Convex C-1 against the Amdahl 5840. In three of the
seven programs the Amdahl has better execution times than the Convex (in the predic-
tions the Amdahl has better times in only two). For the Los Alamos benchmark, the Con-
vex has a completely different distribution compared to the Amdahl. but because the
access time of an array element. is 3 times faster in the Convex, the total execution time is
approximately 30 percent less for the Convex. The numbers in bold type in the table are
50% above the value of the geometric mean of the same parameter when we take as sam-
ple all the distributions.

Analysis of Results and Summary 5 9

Figures 7.1-7.3 show the systems characterization from a different perspective to help
us explain the relative performance of the systems. In these figures the value of each
parameter is normalized with respect to the execution of the VAY-11/780. Instead of
showing all the parameters we chose a representative subset of the most executed opera-
tions. In particular, arithmetic operations with global variables were omitted given that
on most systems, except the CYBER 205, the execution times are almost the same with
local and global operands.

The CRAI’ X-MP executes faster for almost every parameter, especially floating
point nrithmet ic operations with single precision, references to array elements, procedure
calls, and intrinsic functions. The first two groups represent the most frequently executed
operations in scientific programs and for this reason the CRAY executes faster the floating
point intensive benchmarks. On the other hand, the scalar floating point arithmetic
operations with double precision operands are executed faster on the IBM 3090, and even
the VAX 8600 has better results than the CRAY X-MP. However as we pointed out in
section 4.1, our benchmarks executed using 64-bit floating point numbers on the CRAY
and CYBER 205.

In figure 7.2 we see that on the Convex C-1 the execution time of almost all arith-
metic parameters is smaller than the VAX 8600, with the exception of the divide opera-
tion. This parameter executes slower for single precision floating point and integer data
types. The normalized results for the VAX 8600 show that for almost every parameter
the execution on the VAX 8600 is between 4.5 and 7 times faster than the VAX-11/780.
In the case of the VAX-11/785, arithmetic operations and intrinsic functions are between
3 and 4 times faster with respect t o the VAX-11/780, but the difference is less for other
parameters. TheSSUN 3/50 executes faster integer operations, access t o array elements,
branching and loops, but arithmetic operations take more time to execute. The reason for
this is that on the SUN the benchmarks were executed using software emulation of float-
ing point operations.

The most interesting aspect of these figures is that the relative performance is not
uniform: some architectures execute faster for some operations but are slower in others.
Again, this tells us that a single figure of merit cannot show all the dimensions of the
system‘s performance.

7.2. Future Improvements to Our System

In last section we showed that most of our predictions are within 15% of the real
execution times and all but three within 20%. The discrepancy between real and
predicted times is greater on small programs that use a small number of operations, like
the Erathostenes sieve, and better on computationally intensive programs. There are still
some factors that affect our predictions and they must be taken into account in a new
version of the system if we desire to produce better estimates. The following paragraphs
present a discussion of these factors.

i) Locality and Cache Memory. The code we use to measure individual parameters has
a degree of locality in the reference of variables. For this reason, estimates for a pro-
gram that exhibit less locality than our tests will tend t o produce a larger
discrepancy with respect to its actual execution time. Although scientific programs
normally spend most of their time in a small number of DO loops, the amount of
memory ‘touched’ by these loops tends to be very large. Therefore the hit ratio for

~

Analysis of Results and Summary ORIGINAL PAGE IS
OF POOR QUALITY

d
I

m
c
n
s
I

0

n
I
c
S .

d
I

m
e
II
s
I

0

I)

I
e
*
s

1.000 ?

0.100 ?

0.010 ?

c
+ Cray X-MP/48
x Cyber 205

0 VAX- 11 1780
IBM 3000/200

R R R R R R R R R R R R R R I I I I I I I
S S S S S S S D D D D D D D S s s s s
L L L L L L L L L L L L L L L Z Z L L L L

1 .ow

0.100

0.010

-
e e : : 3

N R R I R G G G R R R A O C O O
D S D S O R R I R R R D T O I O
L L L L C S D S l Z a D O M N V

+ Cray X-MP/48
x Cyber 205
a IBM 3000/200
0 VAX-11/780

E L S T S
X O l A Q
P C N N R
s s s s s

FIgure 7.1: Parameters normalized against the VkX-11/780 (I) . The GRAY executes faster

floating point arithmetic operations (single precision) and has the shortest access time for

array elements. These are the most frequently executed operations in the ten benchmarks.

~~ ~~ ~~

Analysis of Results and Summary

X T S A M D E X T

d
I

m
C

n
*
I

0

"
I
e
s .

d

m
e
n
s
I

I
e
*
8

-

-

-

1.00

0.10

0.01

1.00

0.10

0.01

real (single precision) real (double precision) integer

S A M D
R R R R
s s s s
L L L L

VAY 8600
O \.'kY-11/780

E X T S A M D E
R R R R R R R R
S S S D D D D D
L L L L L L L L

A C C C P A A A A A A I
N R R I R C C C R R R A
D S D S O R R I R R R D
L L L L C S D S l a S D

\ . , . . ,

Figure 7.2: Parameters normalized against the VAX-11/780 (11).

62

d
I

m
e
D

s
1

0

n
I
e . .

d
I

10.0

1.0

0.1

10.0

m
e
I)

s

O 1.0
I
e . .

0.1

real (single precisionj real (double precision) integer

+ VU-11/785
0 VkY-11/780
x RT-PC/125

S A M D E X T S A hi D E X T S A M D E X T
R R R R R R R R R R R R R R I I I I I I I
S S S S S S S D D D D D D D S S S S S S S
L

+ VAX-11/785
0 VAX-11/780
x RT-PC/l?L
A Sun 3/50

I a a i i i n 1 a 1 9 * . ~ 9 . a * * n m 1 s t
A C C C P A A A A A A I C C L L E L S T S
N R R I R G C G R R R A O C O O X O
D S D S O R R I R R R D T O I O P C ~ ~ ~
L L L L C S D S 1 2 3 D O M N V S S S S S

Figure 7.8: Parameters normalized against the \rAXl 1/780 (111).

Analysis of Results and Summary 63

ii)

i i i)

iv)

v 1

vi)

vii)

the code is high, but for the data is low. 1Ve ran some tests increasing the number of
different variables inside the body of the test and also increasing the time between
successive reference to the same variable. We found that the measurements obtained
in this way were larger by four to ten percent.

Change of Environment in Branches. When a branch is taken or a subroutine call is
executed, there is normally a change in the set of variables tha t are referenced. This
increases the number of cache misses and also the total execution time of the pro-
gram. If the branch jumps to a new page this may cause a page fault along with a
context switch. A context switch normally involves flushing the cache and this has
the effect of increasing the execution time of the program. Several parameters that
characterize the ‘size’ of the branch will help to measure the penalty that we pay as
a function of the distance between the branch and its target.

Hardware and/or Software Interlocks. In pipelined machines the time it takes to pro-
duce the next result for a particular operation depends on the context in which this
operation executes. This time normally depends on the functional and data depen-
dencies with respect to the previously scheduled instructions. The data dependencies
are a function of the source code, the code produced by the compiler, and the
hardware. We discussed this problem on section 3.4.

hlissing Parameters. In our model there are some simplifications that may increase
the discrepancy between our predictions and the real execution times for some pro-
grams. An example of this is the access of array elements. We assumed that the
overhead in accessing an element is constant for different data types and also that
this overhead is independent of the context in which the access occur. The travers-
ing of a multidimensional array inside a loop is normally done in a regular way (fixed
stride). and the compiler may detect that some dimensions remain constant during
the whole execution of the loop. With this information the compiler may compute
the address for the next element using less operations than it will require if we refer-
ence the element outside the loop. Several new parameters are needed to represent
all the different variation in the reference of an array element.

Limitations of the Linear Model. The assumption that the cost of executing an opera-
tion is independent of the adjacent operations, data dependencies, etc, does not
remain valid if we want to reduce the error in our predictions. Although it is possi-
ble to create new parameters that characterize pair of instructions and with this
keep the linear model hypothesis, this will create an explosion in the number of
parameters. An additional disadvantage is that these ‘compound’ parameters lose
their natural interpretation and it is more difficult to identify weak features in the
systems.

Machine Idioms. Some architectures implement special cases of some instructions
very efficiently. On the VAX architecture it is possible to multiply an integer by two,
four or sixteen, then add another integer and use this result as an address during the
execution of the same instruction. Unless we know the architecture and how the
compiler works it is not possible for us to detect which are the idioms of a given
architecture.

Random Soise Produced by Concurrent Activity. Although we discused this in sec-
tion 4.1, there is still some potential problem when we run in a loaded system.

.4nalysis of Results and Summary 61

If there is a peak of activity during the execution of an experiment, our measure-
ments will be slightly affected by this ‘unusual’ high activity. In programs where
these paramet,ers are the most executed the ‘noise’ will increase our figures in a signi-
ficant way.

7.3. Summary
In this report, we have presented a new paradigm for system characterization and

performance evaluation. The principal attribute of this model is t ha t the set of parame-
ters wed in the characterization of systems are the same set of parameters used to esti-
mate the expected esecution time of programs. The characterization is achieved by run-
ning a set of software experiments that identify, isolate and measure hardware and
software features. LVe exposed the disadvantages and limitations of using current bench-
marks to characterize systems and infer their performance on workloads different from
themselves. lye think that our approach will enrich the area of performance evaluation in
several ways.

(1) .A uniform ‘high level’ model of the performance of computer systems allow us to
make a better comparison between different architectures and identify their differ-
ences and similarities when the systems execute a common workload.
Csing the characterization to predict performance provides us with a mechanism to
validate our assumptions on how the execution time depends on individual com-
ponents of the system.
Lye can study the sensitivity of the system to changes in the workload, and in this
way detect imbalances in the architectures.

,Application programmers and users can identify the most time consuming parts of
their programs and measure the impact of new ‘improvements’ on different systems.

For procurement purposes this is a less expensive and more flexible way of evaluating
computer systems and new architectural features. Although the best way to evaluate
a system is to run a real workload, a more extensive and intensive evaluation can be
made using system characterizers to select a small number of computers for subse-
quent on-site evaluation.

In the last thirty years we have seen an explosion of new ideas in many field of com-
puter science, but one problem that hasn’t received much attention is how to make a fair
comparison between two different architectures. Given the impact that computers have
in all aspects of society we cannot afford to continue characterizing the performance of
such complex systems using hlIPS, MFLOPS or DHRYSTONES as our units of measure.

(2)

(3)

(4)

(5)

7.4. Acknowledgements
I want to give special thanks to my research adviser Prof. Alan J. Smith for suggest-

ing this problem and for his patience and continuous support; his valuable comments
improved the quality of this report enormously. Thanks are also due to Eugene Miya and
Ken G. Stevens Jr. for their comments on earlier drafts of this document and for the pro-
vision of resources a t NASA Ames, as well as to JosC A. Ambros-Ingerson and Prof.
Domenico Ferrari who made many useful suggestions during discussions.

8
Bibliography

[BX I8 5 a]

[BAI8.5 b]

[BAI87]

[BR,486]

[BEE811

[BRI86]

[BLTC85]

[BUC87]

[CLA85]

[CLA86]

[CRA84]

[CUR751

[CUR761

[DEN801

[DEN811

Bailey, D.1-I.. Rarton, J.T.. “The NAS Iiernel Benchmark Program”, NASA
Technical Memorandum 86711, August 1885.

Bailey, D.H., ‘“AS Iiernel Benchmark Results”, Proc. First Int. Con f. on
Supercomputing, St. Petersburg, Florida. December 16-20, 1985. pp. 341-345.

Bailey, D.H., personal (electronic mail) communication.

Bratten, C., Clark. R., Dorn. P., and Grant, R., “IBM 3090:
Engineering/Scientific Performance”, IBhl’s Technical Report No. GG66-
0245, June, 1986.

Beeler, M., “Beyond the Baskett Benchmark”, Computer Architecture News,
Vol. 1, No. 1.)larch 1986.

Brickner, R.G., IYasserman. II.J., Hayes, A.H., and Moore, J.W., “Bench-
marking the IBXI 3090 with Vector Facility”, Los Alamos Technical Report

Bucher, I.Y., Simmons, \l.L., “Performance Assestment of Supercomputers”,
Vector and Parallel Processors: Architecture, applications, and Perfor-
mance Evaluation, Editor: M. Ginsberg, to be published by North Holland.

Bucher, I.Y., and Simmons, L.M. “A Close Look a t Vector Performance of
Register-to-Register Vector Computers and a New Model”. ACM Sigmetrics
Conference o n , ifodeling and Measurement of Computer Systems, Banff,
Canada, May 1887.

Clark, D.W., and Emer. J.S. “Performance of the VAX-1 l / X O Translation
Buffer: Simulation and I\leasurement”. Transactions on Computer Systems,
Vol. 3, No. 1, February 1985, pp. 31-62.
Clapp, R.M., Duchesneau, L., Volz, R.A., Mudge, T.N., and Schultze T., “
Toward Real-Time Performance Benchmarks for ADA”, Communications o f
the ACM, Vol. 29, No. 8, August 1986. pp. 760-778.

CRAY X-MP and CRAl=l Library Reference Manual, SR-0014, December
1984.

Currah B., “Some Causes of Variability in CPU Time”, Computer Measure-
ment and Evaluation, SHARE project, Vol. 3, 1975, pp. 389-392.

Curnow, H.J., Mchmann, B.A., “A Synthetic Benchmark”, The Computer
Journal, Vol. 19, No.1, February 1976, pp. 43-49.
Denning, P.J., “What is Experimental Computer Science”, Communications
o f the ACM, Vol. 23, No. 10, October 1980, pp. 543-544.

Denning, P.J., “Performance Analysis: Experimental Computer Science at Its
Best”, Communications of the ACM, Vol. 24, No. 11, November 1981, pp.

NO. L.4-UR-86-3300, 1986.

725-727.

65

Bibliography 66

[D 0 X85]

[D 0 N87 a]

[DON87b]

[D 0 N 881

[EME84]

[F E Li8]

[FELT91

[FE087]

[FLY 721

[GRA82]

[GRI84]

[HOC811

[HOC851

[HWA84]

(IBB82]

[IBM87]

[KNU71]

[K NU731

Dongarra, J.J.. “Performance of i’arious Computers Using Standard Linear
Equations Software in a Fortran Environment”, Computer Architecture
-Vews, Vol. 13, No. 1. .\larch 1985, pp. 3-11.

Dongarra, J.J.. “The Linpack Benchmark: An Explanation”. Supercomputing
First International Conference Proceedings, ,-ithens 1987. Lecture Notes in
Computer S c i e n c e 297, pp. 456-473.

Dongarra, J.J.. llartin. J., and Worlton J., “Computer Benchmarking: paths
and pitfalls”, Computer. Vol. 24, No. i, July 1987, pp. 38-43.

Dongarra, J.J.. “Performance of Various Computers Using Standard Linear
Equations Software in a Fortran Environment”. Computer Architecture
,Vews, Vol. 16, So. 1. .\larch 1988, pp. 47-69.

Emer, J.S. and Clark, D.W., “A Charact,erization of Processor Performance
in the VAX-11/780”. Proceedings of the 11th Annual Symposium on Com-
puter ,4rchitecture, .Ann Arbor, Michigan, June 1984.

Feldman, S.J., and li’ienberger, P.J., “A Portable Fortran 77 Compiler”,
UNIX 2.2.10 (1981).

Feldman, J.A., and Sutherland, W.R., “Rejuvenating Experimental Computer
Science”, C‘ommunirations of t h e -4CA4, Vol. 24, No. 11, November 1981,

Feo, J.T., “,b Analysis of the Computational and Parallel Complexity of the
Livermore Loops”, to appear Parallel Computing, 1987.

Flynn, M.J., “Some Computer Organizations and their Effectiveness”, IEEE
Transactions on Computers, C-21 pp. 948-960 (1972).

Graham, S.L., Kessler, P.B., McKusick, M.K., “gprof: A Call Graph Execu-
tion Profiler”, Proceedings of the SIGPLAN ’82 Symposium on Compiler
Construction. SIGPL.L\N Notices, 1-01. 17, No. 6, pp 120-126, June 1982.

Griffin, J.H., Simmons, hl.L., “Los Xlamos National Laboratory Computer
Benchmarking 1983“. Los Alamos Technical Report No. LX-10151-MS, June
1984.

Hockney, R.\V. and Jesshope, C.R.. Parallel Computers (Adam Hilger, Bris-
tol, 1981).

Hockney, R.W., ‘‘(roo,n1/2,s1/2) measurements on the 2-CPU CRAY X-MP”,
Parallel Computing, 1‘01. 2, pp. 1-14 (1985).

Hwang, K. and Briggs, F.A., Computer architecture and Parallel Processing,
McGraw Hill, New York, 1984.

Ibbett, R.N., The Architecture of High Performance Computers (Springer-
Verlag, New York, 1982).

IBM 9090 ITS FORTRAN v.2 Language and Library Reference, SC26-4221-
02, 1987.

Knuth, D.E., “An Empirical Study of FORTRAN Programs”, Software-
Practice and Experience, Vol. 1, pp. 105-133 (1971).

Knuth, D.E., The Art of Computer Programming: Vol. 3, Sorting and
Searching, Addison-Wesley, Reading, Mass. 1973.

pp. 497-502.

Bibliography ’ 67

[LEE841

[L I N 86 a]

[LI N 86 b]

[LUB85]

[MAC841

[MARS]

[M C C X]

[MCM86]

[MER831

[MIP8i]

[PAT821

[PEU77]

[POW831

[SHI87]

[SIM87]

[SMI82]

(SMI881

[WE1841

Lee, J.K.F., Smith, A.J., ”Branch Prediction Strategies and Branch Target
Buffer Design”, Computer, Vol. 17, No. 1, January 1984, pp. 6-22.

Lindsay, D.S., “Methodology for Determining the Effects of Optimizing Com-
pilers”, CMG 1986 Conference Proceedings, Las Vegas, Nevada, December

Lindsay, D.S., “DO FORTRAN Compilers Really Optimize”, CMG Transac-
tions. Spring 1986, pp. 23-27.

Lubeck, O., Moore, J., and Mendez, R., “.A Benchmark Comparison of Three
Supercomputers: Fujitsu VP-200, Hitachi S810.20, and CRAY XY-MP/12”,
Proceedings o f the First Internatioriul Conference on Supercomputing Sys-
tems, St. Petersburg, Florida, December 16-20, 1985, pp. 320-329.

MacDougall, M.H., “Instruction-Level Program and Processor hlodeling”,
Computer, Vol. 7 No. 14, July 1982, pp. 14-24.

Martin, J.L., “Performance Evaluation: Applications and Architectures”,
Proc. Second Int. Conf. o n Supercomputing, Vol. 111, pp. 369-373.

McCraken, D.D., Denning, P.J., Grandin, D.H., “,An ACXI Executive Corn-
mittee Position on the Crisis in Experimental Computer Science”, Communi-
cations o f the ,4C‘Ad, Vol. 24, No. 11, November 1981, pp. 503-504.

McMahon, F.H., “The Livermore Fortran Kernels: A Computer Test of the
Floating-Point Performance Range”, Lawrence Livermore National Labora-
tory, UCRL-53745, December 1986.

Merrill, H.W., “Repeatability and Variability of CPU timing in Large IBM
Systems”, CMG Transactions, Vol. 39, March 1983.

MIPS Computer Systems, “A Sun-4 Benchmark Analysis”, July 1987.

Patterson D., “A Performance Evaluation of the Intel 80286”, Computer
Architecture News, Vol. 10, No. 5, September 1982, pp. 16-18.

Peuto, B.L. and Shustek, L.J., L’An Instruction Timing Model of CPU Perfor-
mance”, The fotrrth Annual Symposium on Computer Architecture, Vol. 5 ,
No. 7, March 1977, pp. 165-178.

Power, L.R., “Design and Use of a Program Execution Analyzer”, IBhd Sys-
tems Journal, Vol. 22, No.3, pp. 271-292, 1983.

Shimasaki, M., “Performance Analysis of Vector Supercomputers by
Hockney’s Model”, Proe. Second Int. Con f. on Supercomputing, Vol. 111, pp.

Simmons, M.L. and Wasserman H.J., “Los Alamos National Laboratory Com-
puter Benchmarking 1986”, Los Alamos National Laboratory, LA-10898-MS,
January 1987.

Smith, A.J., “CPU Cache Memories”, ACM Computing Surveys, Vol. 14,
No. 3, September 1982, pp. 473-530.

Smith, A.J., paper in preparation.

Weicker, R.,P., “Dhrystone: A Synthetic Systems Programming Benchmark”,
Communications of the ACM, Vol. 27, No. 10, October 1984.

9-12. 1986, pp. 366-373.

359-368.

Bibliography

[WE821 Wiece.., ,4.C., “,. case St.udy o r

68

Instruction Set Usage for Compiler
Execution”. Symposium on Architectural Support for Programming
Languages a n d Operating Systems, Palo Alto, California, March 1-3, 1982,

[LVOR84] IVorlton, J., “Understanding Supercomputer Benchmarks”, Datamation,
pp. 177-184.

September 1, 1984. pp. 121-130.

9
Appendix

73
74

341

421
1470
3601

16480
26364

385

Region 1: Floi

machine
CRAY X-MP/48

83 847
128 564
407 1028

575 1583
2021 4200
7310 10135

?0525 ??874
41204 46172

514 ?em

CYBER 205
IBM 3080/200
Arndahl 5840
Convex C1
VAX 8600
VAX-111785

IBM RT-PCl125
SUN 3/50

VAX- 111780

707
137
432
820

1681
5018

27778
16324

101565

1<
34

118
104
55

387
547

3821
767

3170
014

1541
4263
5885
8312

51281
18487

136108

I

11 SRDL

3620
383
782

2023
10177

27030
114533

130

35004

ng Point Arithmetic Operat

73 145 352

55350
23300
42170

210304
651684

1217774
5568884

48303

2007e80

ns (sing11
ERSL

5
86

168

812
172

1101
3876

11422
31633
58030

238

Remon 2: Floatine Point Arithmetic ODerations (double, local)
ERDL I XRDL

machine d
CYBER 205
IBM 3080/200
Arndahl5840
Convex C1
VAX 8800
VkY-lll785

IBM RT-PCl125
SUN 3/50

VAX- 111780

1<
4 3
60

180
183

1038
831
833
1<

-
ARDL MRDL I DRDL

local)
XRSL

6

5155
8844
6358

42516
28621

221337
703410

2104654
1265778
4745064

0

1128
847
74

240

805
3374

12188
15102
56163

481

Rerrion 3: lnteeer Arithmetic Ooerations

machine
CRAY X-MP/48
CYBER 205
IBM 3000/200
Amdahl5840
Convex C1
VAX 8600
VAX-111785
VAX-111780
IBM RT-PC1125
SUN 3/50

SISL
15

1<
1<
1<
1<
1<
1<
1<
1<
1<
1<

Y

AlSL
16

86
39
75
68

303
345

1182
1 e24
1118
202

MlSL I DlSL

1130
148 430

684

single, local)

101 221
167 354

407 766
865 1821

2587 5058
7860 16151
4640 0804

347 me

27eoo 33418

TRSL
7
276
74
62

420
676
450

2645
3307
6034
2843

TRDL
14
103
60
68

170
1110
1035
5821
6103
1010
5024

TISL
21
307
20
80

178
627
422

2865
2418
1039
1<

Table 9.1: Characterization results for regions 1-3. A value 1 < indicates that the parameter was

not detected by the experiment.

69

Appendix

SRSG ARSG MRSG DRSG ERSG
machine 22 23 24 25 26

-CRAY s - M P / ~ ~ 83 72 138 348 85
W E R 205 160 354 470 1382 312
lBhl 3090/200 37 76 138 568 246

VAX 8600 88 553 688 1629 1060

Amdahl 5840 118 338 4Og 1033 818
Convex C1 74 396 523 2658 186

VAX- 11/785 486 1445 2004 4205 3871
VAX-11/780 483 3628 7415 10148 11443
IBM RT-PC/1?5 3820 16776 21058 23784 31328
SUN 3/50 215 26518 1 38684 47488 61871

70

SRSG TRSG
27 28
5168 273
8538 160
5370 97

43108 431
27885 648

220843 445
675706 2311

2091213 2322
1260805 54?0
4778238 3401

32 33 34 I 35

SUN 3/50 11312 52740 96362 134008 112031 5625248 1<

ANDL
mach ine 43

CRAY X-MP/48 52
CYBER 205 46
IBM 3080/200 122
h d a h l 5 8 4 0 110
Convex C1 302
VAX 8600 300
VAX-111785 888
VAX-11/780 1170

SLW 3/50 568
IBM RT-PC/l25 583

CRSL
44
207
167
124
477
515
644

4138
3161

13372
11820

3785
914

1552
4318
5887
8308

48574
18113

3788
288
795
84

2808
8575

34300
27205

55516
22404
42703
i6083

220448
648898

2067708
1216348

235
88

164
1081
874

4842
5422
2808

CYBER 205
IBM 3080/?00
Amdahl5840
Convex C1
VAX 8600
VAX- 11/785
VAX- 11/780
IBM RT-PC/125

238

1714
4708

25783
17084

ngle. global) R e d o n 6: lnteeer Arithmetic 0 rations .,
AlSG

- . -
EISG

40
407
346
200
350
387
960

2780
7812
4767

28881

TISG
42
307
201
103
173
624
558

2882
2415
1145
854

DISC
38
708

1482
442
687

2651
1585
7653

11063
7801
6642

XISG
41

785
467
545
632
768

1851
5884

16205
10063
33728

MISG
38

432
188
145
221
276
615

1871
7343
4884
32?0

machine
CRAY X-MP/48

37
86

387
82
74

288
535

1185
16??
987
420

CYBER 205
IBM 3080/?00
Amdahl 5840
Convex C1
VAX 8600
VkY-11/785
VkY-11/780
IBM RT-PC/125
SUN 3/50

1<
1<
1<
1<
1<
1<
1<
1<
1<

Region 7: Conditional d Logical Parameters
CISL I ANDG CRSG I CRDG ClSG

50
202
548
155
150
507
778

1670
2305
1643
1615

CRDL
45
1247
447
130
284
800
860

2641
4068

11850
2 m 4

628 1074
141 258
476 238
502 806
82 1 865

2248 3025
3003 5023

12282 11820
14083 25556

151 116
488
407 318

1670

1281 674
1158

Table 9.2: Characterization results for regions 4 7 . A value 1< indicates tha t the parameter was

no t detected by the experiment.

-

machine
CRAI’ S-.\1P/48
CYBER 205
1BM 3000/200
Amdahl 5840
Convex C1
VAX 8800
VAX-ll/i85
VAX-l1/780
IBM RT-PC/125
SUN 3/50

PROC
51
500

5322
1242
1088
5270
5848

20808
21716
7014
8588

-

machine
CRAY X-MP/48
CYBER 205

.amdahl 5840
Convex C1
VAX 8600
VAX-111785
VAX- 111780
IBM RT-PC1125
SUN 3/50

IBM 3000/200

-
G O T 0 GCOM

50 60

23 451
20 1000
41 234
20

1< 1531
163 2523
1< 3302
468 6874

45 6230
385 2857

-

7 LOGD I SIND I TAND I SQRD 1
71 72 73 74

hppendix 71

Regions 8, Q: Function Call, Arguments and References to Array Elements
AGRD I AGIS I ARRl AGRS

52
165
52 1
178
100
74

512
602

3165
1078

15164

ARR2
56

00
330
322
47 1
570

1322
3613

11820
2612
2452

ARR3
57
142
801
565
715
Of38

2728
6046

20263
3566
6328

IADD
58

1<
6
7
5

1<
1<
1<
1<
06

037

53
214
560
103
80

348
674

1078
3070
428

15326

201
176

1708

R k o n 10: Branching and DO loop Parameters
, LOIN
’ 61 =

003
838
654

3470
4660

18123
7085
4444
6237

-

LOOV
62
240
176
107
686
722
550

1384
5138
2038
040

LOIX
63
473

1542
754

2078
3682
1<

0783
8641
7508

-

LOOX
64
265
200
243

1402
1386
3884
4825
3154
?428

-

Region 11: Intrinsic Functions (single precision)

I]I EXPS I LOGS I SINS I TANS I SQRS 1
machine b 65 I 66 I 67 I 68

1864 I 1647 I 1848 1 2046
6116
5434

11683
67253

205647
728008
65016

760844

-

5248
5287

0068
76578

238165
800876
50481

055845

-

6651
5887

11106
68678

181380
556320

04385
1525150

-
CYBER 205
IBM 3000/200
Amdahl 5840
Convex C1
VAX 8600
VAX- 11/785
VAX-11/780
IBM RT-PC/125
SUN 3/50

5212
4865

7455
42078

111806
487725
00181

1278520

-
11166
24108
50720

186008
43200
87532

EXPD
70
62027
28372
25433

20007
66552

200483
738768

46847
2088322

-

machine b
CYBER 205
IBM 3000/200
Amdrhl5840
Convex C1
VAX 8600
VAX-111785
VAX-11/780
IBM RT-PC/1?5
SUN 3/50

25686
23888

15684
76417

240538
816048
41634

2355612

-
32122
22542

12801
41673

11 18%
482781
38524

2225082

-

Table 9.8: Characterization results for regions 8-12. A value I < indicates that the parameter
was not detected by the experiment. The results for the Amdahl 5840 were obtained using

a simpler model.

.

1. Report No.

NASA CR 1775 1 1

Report Documentation Page
2. Government Accession No.

17. Key Words (Suggested by Author(s))

Machine Characterization and Benchmark Performance
Prediction

18. Distribution Statement

7. AuthorM

Execution profilers
Performance prediction
Machine characterization

Rafael H. Saavedra-Barrera (University of California,
Berkeley, CA)

9. Performing Organization Name and Address

Unlimited-Unclassified

Subject category: 62

Ames Research Center
Moffett Field, CA 94035

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages

12. Sponsoring Agency Name and Address

22. Price

National Aeronautics and Space Administration
Washington, DC 20546-000 1

Unclassified

15. Supplementary Notes

Unclassified 83 A04

3. Recipient's Catalog No.

5. Report Date

December 1988
6. Performing Organization Code

~~

8. Performing Organization Report No.

10. Work Unit No.

505-65-0 1
11. Contract or Grant No.

NCA2- 1 28
13. Type of Report and Period Covered

Contractor Report
14. Sponsoring Agency Code

.- --

Point of Contact: K. G. Stevens, Jr., Ames Research Center, MS 258-5, Moffett Field, CA 94035
(41 5) 694-5949 or FTS 464-5949

16. Abstract

From runs of standard benchmarks or benchmark suites, it is not possible to characterize the
machine nor to predict the running time of other benchmarks which have not been run. In this paper, we
report on a new approach to benchmarking and machine characterization. We describe the creation and
use of a machine analyzer, which measures the performance of a given machine on Fortran source lan-
guage constructs. The machine analyzer yields a set of parameters which characterize the machine and
spotlight its strong and weak points. We also describe a program analyzer, which analyzes Fortran pro-
grams and determines the frequency of execution of each of the same set of source language operations.
We then show that by combining a machine characterization and a program characterization, we are able
to predict with good accuracy the running time of a given benchmark on a given machine.
Characterizations are provided for the Cray X-MP/48, Cyber 205, IBM 3090/200, Amdahl 5840,
Convex C-1, VAX 8600, VAX 11l785, VAX 11D80, SUN 3/50 and IBM RT-PC/125, and for the
following benchmark programs or suites: Los Alamos (BMK8A1), Baskett, Linpack, Livermore Loops,
Mandelbrot Set, NAS Kernels, Shell Sort, Smith, Whetstone and Sieve of Erathostenes.

